
PHP

Modern PHP

ISBN: 978-1-491-90501-2

US $29.99	 CAN $34.99

“	For years I've struggled
to recommend a PHP
book that reflected
the current state of
the language and
community. With Modern
PHP, I finally have a title
I can endorse without
hesitation.”

—Ed Finkler
Developer and author, Funkatron.com

“	In programming, the 	
only constant is change.
PHP is changing, and
the way you develop
applications has to 	
as well. Josh has laid 	
out the tools and
concepts that you 	
need to be aware of to
write modern PHP.

—Cal Evans

Twitter: @oreillymedia
facebook.com/oreilly

PHP is experiencing a renaissance, though it may be difficult to tell with all of
the outdated PHP tutorials online. With this practical guide, you’ll learn how
PHP has become a full-featured, mature language with object-orientation,
namespaces, and a growing collection of reusable component libraries.

Author Josh Lockhart—creator of PHP The Right Way, a popular initiative
to encourage PHP best practices—reveals these new language features
in action. You’ll learn best practices for application architecture and
planning, databases, security, testing, debugging, and deployment. If
you have a basic understanding of PHP and want to bolster your skills,
this is your book.

■■ Learn modern PHP features, such as namespaces, traits,
generators, and closures

■■ Discover how to find, use, and create PHP components

■■ Follow best practices for application security, working
withdatabases, errors and exceptions, and more

■■ Learn tools and techniques for deploying, tuning, testing, and
profiling your PHP applications

■■ Explore Facebook’s HVVM and Hack language
implementations—and how they affect modern PHP

■■ Build a local development environment that closely matches
your production server

Josh Lockhart created the Slim Framework, a popular PHP micro framework
that enables rapid web application and API development. He also started and
currently curates PHP The Right Way, a popular initiative in the PHP commu-
nity that encourages good practices and disseminates quality information to PHP
developers worldwide. He is a developer at New Media Campaigns in Carrboro,
North Carolina.

Josh Lockhart

Modern
 PHP
NEW FEATURES AND GOOD PRACTICES

M
odern PH

P
Lockhart

PHP

Modern PHP

ISBN: 978-1-491-90501-2

US $29.99	 CAN $34.99

“	For years I've struggled
to recommend a PHP
book that reflected
the current state of
the language and
community. With Modern
PHP, I finally have a title
I can endorse without
hesitation.”

—Ed Finkler
Developer and author, Funkatron.com

“	In programming, the 	
only constant is change.
PHP is changing, and
the way you develop
applications has to 	
as well. Josh has laid 	
out the tools and
concepts that you 	
need to be aware of to
write modern PHP.

—Cal Evans

Twitter: @oreillymedia
facebook.com/oreilly

PHP is experiencing a renaissance, though it may be difficult to tell with all of
the outdated PHP tutorials online. With this practical guide, you’ll learn how
PHP has become a full-featured, mature language with object-orientation,
namespaces, and a growing collection of reusable component libraries.

Author Josh Lockhart—creator of PHP The Right Way, a popular initiative
to encourage PHP best practices—reveals these new language features
in action. You’ll learn best practices for application architecture and
planning, databases, security, testing, debugging, and deployment. If
you have a basic understanding of PHP and want to bolster your skills,
this is your book.

■■ Learn modern PHP features, such as namespaces, traits,
generators, and closures

■■ Discover how to find, use, and create PHP components

■■ Follow best practices for application security, working with
databases, errors and exceptions, and more

■■ Learn tools and techniques for deploying, tuning, testing, and
profiling your PHP applications

■■ Explore Facebook’s HVVM and Hack language
implementations—and how they affect modern PHP

■■ Build a local development environment that closely matches
your production server

Josh Lockhart created the Slim Framework, a popular PHP micro framework
that enables rapid web application and API development. He also started and
currently curates PHP The Right Way, a popular initiative in the PHP commu-
nity that encourages good practices and disseminates quality information to PHP
developers worldwide. He is a developer at New Media Campaigns in Carrboro,
North Carolina.

Josh Lockhart

Modern
 PHP
NEW FEATURES AND GOOD PRACTICES

M
odern PH

P
Lockhart

Josh Lockhart

Modern PHP
New Features and Good Practices

978-1-491-90501-2

[LSI]

Modern PHP
by Josh Lockhart

Copyright © 2015 Josh Lockhart. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Allyson MacDonald
Production Editor: Nicole Shelby
Copyeditor: Phil Dangler
Proofreader: Eileen Cohen

Indexer: Judy McConville
Interior Designer: David Futato
Cover Designer: Ellie Volckhausen
Illustrator: Rebecca Demarest

February 2015: First Edition

Revision History for the First Edition
2015-02-09: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491905012 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Modern PHP, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491905012

For Laurel

Table of Contents

Preface. xiii

Part I. Language Features

1. The New PHP. 1
Past 1
Present 2
Future 3

2. Features. 5
Namespaces 5

Why We Use Namespaces 7
Declaration 8
Import and Alias 9
Helpful Tips 11

Code to an Interface 13
Traits 17

Why We Use Traits 18
How to Create a Trait 19
How to Use a Trait 20

Generators 22
Create a Generator 22
Use a Generator 23

Closures 25
Create 25
Attach State 27

Zend OPcache 29

v

Enable Zend OPcache 29
Configure Zend OPcache 31
Use Zend OPcache 31

Built-in HTTP server 31
Start the Server 32
Configure the Server 32
Router Scripts 33
Detect the Built-in Server 33
Drawbacks 33

What’s Next 34

Part II. Good Practices

3. Standards. 37
PHP-FIG to the Rescue 37
Framework Interoperability 38

Interfaces 38
Autoloading 39
Style 39

What Is a PSR? 40
PSR-1: Basic Code Style 40
PSR-2: Strict Code Style 41
PSR-3: Logger Interface 45

Write a PSR-3 Logger 46
Use a PSR-3 Logger 47

PSR-4: Autoloaders 47
Why Autoloaders Are Important 47
The PSR-4 Autoloader Strategy 48
How to Write a PSR-4 Autoloader (and Why You Shouldn’t) 49

4. Components. 51
Why Use Components? 51
What Are Components? 52
Components Versus Frameworks 53

Not All Frameworks Are Bad 54
Use the Right Tool for the Job 54

Find Components 55
Shop 56
Choose 56
Leave Feedback 57

Use PHP Components 57

vi | Table of Contents

How to Install Composer 58
How to Use Composer 59
Example Project 61
Composer and Private Repositories 64

Create PHP Components 66
Vendor and Package Names 66
Namespaces 66
Filesystem Organization 67
The composer.json File 68
The README file 70
Component Implementation 71
Version Control 72
Packagist Submission 73
Using the Component 74

5. Good Practices. 75
Sanitize, Validate, and Escape 75

Sanitize Input 76
Validate Data 79
Escape Output 80

Passwords 80
Never Know User Passwords 81
Never Restrict User Passwords 81
Never Email User Passwords 81
Hash User Passwords with bcrypt 82
Password Hashing API 82
Password Hashing API for PHP < 5.5.0 87

Dates, Times, and Time Zones 87
Set a Default Time Zone 88
The DateTime Class 88
The DateInterval Class 89
The DateTimeZone Class 91
The DatePeriod Class 92
The nesbot/carbon Component 93

Databases 93
The PDO Extension 93
Database Connections and DSNs 93
Prepared Statements 96
Query Results 98
Transactions 100

Multibyte Strings 103
Character Encoding 104

Table of Contents | vii

Output UTF-8 Data 105
Streams 106

Stream Wrappers 106
Stream Context 109
Stream Filters 110
Custom Stream Filters 112

Errors and Exceptions 115
Exceptions 115
Exception Handlers 118
Errors 119
Error Handlers 121
Errors and Exceptions During Development 123
Production 124

Part III. Deployment, Testing, and Tuning

6. Hosting. 129
Shared Server 129
Virtual Private Server 130
Dedicated Server 131
PaaS 131
Choose a Hosting Plan 132

7. Provisioning. 133
Our Goal 134
Server Setup 134

First Login 134
Software Updates 135
Nonroot User 135
SSH Key-Pair Authentication 136
Disable Passwords and Root Login 138

PHP-FPM 138
Install 138
Global Configuration 139
Pool Configuration 140

nginx 143
Install 143
Virtual Host 143

Automate Server Provisioning 146
Delegate Server Provisioning 146
Further Reading 147

viii | Table of Contents

What’s Next 147

8. Tuning. 149
The php.ini File 149
Memory 150
Zend OPcache 151
File Uploads 152
Max Execution Time 153
Session Handling 154
Output Buffering 155
Realpath Cache 155
Up Next 155

9. Deployment. 157
Version Control 157
Automate Deployment 157

Make It Simple 158
Make It Predictable 158
Make It Reversible 158

Capistrano 158
How It Works 158
Install 159
Configure 159
Authenticate 161
Prepare the Remote Server 161
Capistrano Hooks 162
Deploy Your Application 163
Roll Back Your Application 163

Further Reading 163
What’s Next 163

10. Testing. 165
Why Do We Test? 165
When Do We Test? 166

Before 166
During 166
After 166

What Do We Test? 166
How Do We Test? 167

Unit Tests 167
Test-Driven Development (TDD) 167
Behavior-Driven Development (BDD) 167

Table of Contents | ix

PHPUnit 168
Directory Structure 169
Install PHPUnit 170
Install Xdebug 170
Configure PHPUnit 171
The Whovian Class 172
The WhovianTest Test Case 173
Run Tests 175
Code Coverage 176

Continuous Testing with Travis CI 177
Setup 177
Run 178

Further Reading 178
What’s Next 179

11. Profiling. 181
When to Use a Profiler 181
Types of Profilers 181
Xdebug 182

Configure 182
Trigger 183
Analyze 183

XHProf 183
Install 184
XHGUI 184
Configure 185
Trigger 185

New Relic Profiler 185
Blackfire Profiler 186
Further Reading 186
What’s Next 186

12. HHVM and Hack. 187
HHVM 187

PHP at Facebook 188
HHVM and Zend Engine Parity 189
Is HHVM Right for Me? 190
Install 190
Configure 191
Extensions 192
Monitor HHVM with Supervisord 192
HHVM, FastCGI, and Nginx 194

x | Table of Contents

The Hack Language 195
Convert PHP to Hack 196
What is a Type? 196
Static Typing 197
Dynamic Typing 198
Hack Goes Both Ways 198
Hack Type Checking 199
Hack Modes 200
Hack Syntax 200
Hack Data Structures 202
HHVM/Hack vs. PHP 203

Further Reading 204

13. Community. 205
Local PUG 205
Conferences 205
Mentoring 206
Stay Up-to-Date 206

Websites 206
Mailing Lists 206
Twitter 206
Podcasts 206
Humor 207

A. Installing PHP. 209

B. Local Development Environments. 229

Index. 237

Table of Contents | xi

Preface

There are a million PHP tutorials online. Most of these tutorials are outdated and
demonstrate obsolete practices. Unfortunately, these tutorials are still referenced
today thanks to their Google immortality. Outdated information is dangerous to
unaware PHP programmers who unknowingly create slow and insecure PHP applica‐
tions. I recognized this issue in 2013, and it is the primary reason I began PHP The
Right Way, a community initiative to provide PHP programmers easy access to high-
quality and up-to-date information from authoritative members of the PHP
community.

Modern PHP is my next endeavor toward the same goal. This book is not a reference
manual. Nope. This book is a friendly and fun conversation between you and me. I’ll
introduce you to the modern PHP programming language. I’ll show you the latest
PHP techniques that I use every day at work and on my open source projects. And I’ll
help you use the latest coding standards so you can share your PHP components and
libraries with the PHP community.

You’ll hear me say “community” over and over (and over). The PHP community is
friendly and helpful and welcoming—although not without occasional drama. If you
become curious about a specific feature mentioned in this book, reach out to your
local PHP user group with questions. I guarantee you there are nearby PHP develop‐
ers who would love to help you become a better PHP programmer. Your local PHP
user group is an invaluable resource as you continue to improve your PHP skills long
after you finish this book.

What You Need to Know About This Book
Before we get started, I want to set a few expectations. First, it is impossible for me to
cover every way to use PHP. There isn’t enough time. Instead, I will show you how I
use PHP. Yes, this is an opinionated approach, but I use the very same practices and
standards adopted by many other PHP developers. What you take away from our
brief conversation will be immediately applicable in your own projects.

xiii

http://www.phptherightway.com
http://www.phptherightway.com

Second, I assume you are familiar with variables, conditionals, loops, and so on; you
don’t have to know PHP, but you should at least bring a basic understanding of these
fundamental programming concepts. You can also bring coffee (I love coffee). I’ll
supply everything else.

Third, I do not assume you are using a specific operating system. However, my code
examples are written for Linux. Bash commands are provided for Ubuntu and
CentOS and may also work on OS X. If you use Windows, I highly recommend you
spin up a Linux virtual machine so you can run the example code in this book.

How This Book Is Organized
Part I demonstrates new PHP features like namespaces, generators, and traits. It
introduces you to the modern PHP language, and it exposes you to features you may
not have known about until now.

Part II explores good practices that you should implement in your PHP applications.
Have you heard the term PSR, but you’re not entirely sure what it is or how to use it?
Do you want to learn how to sanitize user input and use safe database queries? This
chapter is for you.

Part III is more technical than the first two parts. It demonstrates how to deploy,
tune, test, and profile PHP applications. We dive into deployment strategies with
Capistrano. We talk about testing tools like PHPUnit and Travis CI. And we explore
how to tune PHP so it performs as well as possible for your application.

Appendix A provides step-by-step instructions for installing and configuring PHP-
FPM on your machine.

Appendix B explains how to build a local development environment that closely
matches your production server. We explore Vagrant, Puppet, Chef, and alternative
tools to help you get started quickly.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

xiv | Preface

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/codeguy/modern-php.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Modern PHP by Josh Lockhart
(O’Reilly). Copyright 2015 Josh Lockhart, 978-1-491-90501-2.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Preface | xv

https://github.com/codeguy/modern-php
mailto:permissions@oreilly.com

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/modern_php.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

xvi | Preface

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://bit.ly/modern_php
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments
This is my first book. When O’Reilly approached me about writing Modern PHP, I
was equally excited and scared to death. The first thing I did was a Walter Huston
dance; I mean, O’Reilly wanted me to write a book. How cool is that!? Then I asked
myself can I really write that many pages? A book isn’t a quick or small task.

Of course, I immediately said “yes.” I knew I could write Modern PHP because I had
family, friends, coworkers, editors, and reviewers supporting me the entire way. I
want to acknowledge and thank my supporters for their invaluable feedback. Without
them, this book would never have happened.

First, I want to thank my editor at O’Reilly Media—Allyson MacDonald (@allyator‐
eilly). Ally was nice, critical, supportive, and smart. She knew exactly how and when
to gently nudge me in the right direction whenever I got off track. I can’t imagine
working with a better editor.

I also want to thank my technical reviewers—Adam Fairholm (@adamfairholm) and
Ed Finkler (@funkatron). Adam is a brilliant web developer at Newfangled, and he is
perhaps best known for his work on IMVDb—the popular music video database. Ed
is well-known throughout the PHP community for his incredible PHP skills, his per‐
sonality on the /dev/hell podcast, and his commendable Open Sourcing Mental Ill‐
ness campaign. Adam and Ed both pointed out everything dumb, illogical, and
incorrect in my early drafts. This book is far better than anything I could write on my
own thanks to their brutally honest feedback. I am forever indebted to them for their
guidance and wisdom. If any faults or inaccuracies wriggled their way into the final
manuscript, those faults are surely my own.

My coworkers at New Media Campaigns have been a constant source of encourage‐
ment. Joel, Clay, Kris, Alex, Patrick, Ashley, Lenny, Claire, Todd, Pascale, Henry, and
Nathan—I tip my hat to all of you for your kind words of encouragement from begin‐
ning to end.

And most important, I want to thank my family—Laurel, Ethan, Tessa, Charlie, Lisa,
Glenn, and Liz. Thank you for your encouragement, without which I would have
never finished this book. To my lovely wife, Laurel, thank you for your patience.
Thank you for accompanying me to Caribou Coffee for so many late-night writing
sessions. Thank you for letting me abandon you on weekends. Thank you for keeping
me motivated and on schedule. I love you now and forever.

Preface | xvii

https://twitter.com/allyatoreilly
https://twitter.com/allyatoreilly
https://twitter.com/adamfairholm
https://twitter.com/funkatron
https://www.newfangled.com
http://imvdb.com
http://devhell.info
http://funkatron.com/osmi
http://funkatron.com/osmi
http://www.newmediacampaigns.com

PART I

Language Features

CHAPTER 1

The New PHP

The PHP language is experiencing a renaissance. PHP is transforming into a modern
scripting language with helpful features like namespaces, traits, closures, and a built-
in opcode cache. The modern PHP ecosystem is evolving, too. PHP developers rely
less on monolithic frameworks and more on smaller specialized components. The
Composer dependency manager is revolutionizing how we build PHP applications; it
emancipates us from a framework’s walled garden and lets us mix and match intero‐
perable PHP components best suited for our custom PHP applications. Component
interoperability would not be possible without community standards proposed and
curated by the PHP Framework Interop Group.

Modern PHP is your guide to the new PHP, and it will show you how to build and
deploy amazing PHP applications using community standards, good practices, and
interoperable components.

Past
Before we explore modern PHP, it is important to understand PHP’s origin. PHP is
an interpreted server-side scripting language. This means you write PHP code,
upload it to a web server, and execute it with an interpreter. PHP is typically used
with a web server like Apache or nginx to serve dynamic content. However, PHP can
also be used to build powerful command-line applications (just like bash, Ruby,
Python, and so on). Many PHP developers don’t realize this and miss out on a really
exciting feature. Not you, though.

You can read the official PHP history at http://php.net/manual/history.php.php. I won’t
repeat what has already been said so well by Rasmus Lerdorf (the creator of PHP).
What I will tell you is that PHP has a tumultuous past. PHP began as a collection of
CGI scripts written by Rasmus Lerdorf to track visits to his online resume. Lerdorf

1

http://php.net/manual/history.php.php

named his set of CGI scripts “Personal Home Page Tools.” This early incarnation was
completely different from the PHP we know today. Lerdorf ’s early PHP Tools were
not a scripting language; they were tools that provided rudimentary variables and
automatic form variable interpretation using an HTML embedded syntax.

Between 1994 and 1998, PHP underwent numerous revisions and even received a few
ground-up rewrites. Andi Gutmans and Zeev Suraski, two developers from Tel Aviv,
joined forces with Rasmus Lerdorf to transform PHP from a small collection of CGI
tools into a full-fledged programming language with a more consistent syntax and
basic support for object-oriented programming. They named their final product
PHP 3 and released it in late 1998. The new PHP moniker was a departure from ear‐
lier names, and it is a recursive acronym for PHP: Hypertext Preprocessor. PHP 3 was
the first version that most resembled the PHP we know today. It provided superior
extensibility to various databases, protocols, and APIs. PHP 3’s extensibility attracted
many new developers to the project. By late 1998, PHP 3 was already installed on a
staggering 10% of the world’s web servers.

Present
Today, the PHP language is quickly evolving and is supported by dozens of core team
developers from around the world. Development practices have changed, too. In the
past, it was common practice to write a PHP file, upload it to a production server
with FTP, and hope it worked. This is a terrible development strategy, but it was nec‐
essary due to a lack of viable local development environments.

Nowadays, we eschew FTP and use version control instead. Version control software
like Git helps maintain an auditable code history that can be branched, forked, and
merged. Local development environments are identical to production servers thanks
to virtualization tools like Vagrant and provisioning tools like Ansible, Chef, and
Puppet. We leverage specialized PHP components with the Composer dependency
manager. Our PHP code adheres to PSRs—community standards managed by the
PHP Framework Interop Group. We thoroughly test our code with tools like
PHPUnit. We deploy our applications with PHP’s FastCGI process manager behind a
web server like nginx. And we increase application performance with an opcode
cache.

Modern PHP encompasses many new practices that may be unfamiliar to those of
you new to PHP, or to those upgrading from older PHP versions. Don’t feel over‐
whelmed. I’ll walk through each concept later in this book.

I’m also excited that PHP now has an official draft specification—something it lacked
until 2014.

2 | Chapter 1: The New PHP

Most mature programming languages have a specification. In lay‐
man’s terms, a specification is a canonical blueprint that defines
what it means to be PHP. This blueprint is used by developers who
create programs that parse, interpret, and execute PHP code. It is
not for developers who create applications and websites with PHP.

Sara Golemon and Facebook announced the first PHP specification draft at O’Reilly’s
OSCON conference in 2014. You can read the official announcement on the PHP
internals mailing list, and you can read the PHP specification on GitHub.

An official PHP language specification is becoming more important given the intro‐
duction of multiple competing PHP engines. The original PHP engine is the Zend
Engine, a PHP interpreter written in C and introduced in PHP 4. The Zend Engine
was created by Rasmus Lerdorf, Andi Gutmans, and Zeev Suraski. Today the Zend
Engine is the Zend company’s main contribution to the PHP community. However,
there is now a second major PHP engine—the HipHop Virtual Machine from Face‐
book. A language specification ensures that both engines maintain a baseline
compatibility.

A PHP engine is a program that parses, interprets, and executes
PHP code (e.g., the Zend Engine or Facebook’s HipHop Virtual
Machine). This is not to be confused with PHP, which is a generic
reference to the PHP language.

Future
The Zend Engine is improving at a rapid pace with new features and improved per‐
formance. I attribute the Zend Engine’s improvements to its new competition, specifi‐
cally Facebook’s HipHop Virtual Machine and Hack programming language.

Hack is a new programming language built on top of PHP. It introduces static typing,
new data structures, and additional interfaces while maintaining backward compati‐
bility with existing dynamically typed PHP code. Hack is targeted at developers who
appreciate PHP’s rapid development characteristics but need the predictability and
stability from static typing.

We’ll discuss dynamic versus static typing later in this book. The
difference between the two is when PHP types are checked.
Dynamic types are checked at runtime, whereas static types are
checked at compile time. Jump ahead to Chapter 12 for more
information.

Future | 3

http://bit.ly/php-internals
http://bit.ly/php-internals
http://bit.ly/php-langspec
http://www.zend.com/en/company/community/php/
http://www.zend.com/en/company/community/php/

The HipHop Virtual Machine (HHVM) is a PHP and Hack interpreter that uses a just
in time (JIT) compiler to improve application performance and reduce memory
usage.

I don’t foresee Hack and HHVM replacing the Zend Engine, but Facebook’s new con‐
tributions are creating a giant splash in the PHP community. Increasing competition
has prompted the Zend Engine core team to announce PHP 7, an optimized Zend
Engine said to be on par with HHVM. We’ll discuss these developments further in
Chapter 12.

It’s an exciting time to be a PHP programmer. The PHP community has never been
this energized, fun, and innovative. I hope this book helps you firmly embrace
modern PHP practices. There are a ton of new things to learn, and many more things
on the horizon. Consider this your roadmap. Now let’s get started.

4 | Chapter 1: The New PHP

http://bit.ly/php7-timeline

CHAPTER 2

Features

The modern PHP language has many exciting new features. Many of these features
will be brand new to PHP programmers upgrading from earlier versions, and they’ll
be a nice surprise to programmers migrating to PHP from another language. These
new features make the PHP language a powerful platform and provide a pleasant
experience for building web applications and command-line tools.

Some of these features aren’t essential, but they still make our lives easier. Some fea‐
tures, however, are essential. Namespaces, for example, are a cornerstone of modern
PHP standards and enable development practices that modern PHP developers take
for granted (e.g., autoloading). I’ll introduce each new feature, explain why it is use‐
ful, and show you how to implement it in your own projects.

I encourage you to follow along on your own computer. You can
find all of the text’s code examples in this book’s companion Git‐
Hub repository.

Namespaces
If there is one modern PHP feature I want you to know, it is namespaces. Introduced
in PHP 5.3.0, namespaces are an important tool that organizes PHP code into a vir‐
tual hierarchy, comparable to your operating system’s filesystem directory structure.
Each modern PHP component and framework organizes its code beneath its own
globally unique vendor namespace so that it does not conflict with, or lay claim to,
common class names used by other vendors.

5

https://github.com/codeguy/modern-php
https://github.com/codeguy/modern-php

Don’t you hate it when you walk into a coffee shop and this one
obnoxious person has a mess of books, cables, and whatnot spread
across several tables? Not to mention he’s sitting next to, but not
using, the only available power outlet. He’s wasting valuable space
that could otherwise be useful to you. Figuratively speaking, this
person is not using namespaces. Don’t be this person.

Let’s see how a real-world PHP component uses namespaces. The Symfony Frame‐
work’s own symfony/httpfoundation is a popular PHP component that manages
HTTP requests and responses. More important, the symfony/httpfoundation com‐
ponent uses common PHP class names like Request, Response, and Cookie. I guar‐
antee you there are many other PHP components that use these same class names.
How can we use the symfony/httpfoundation PHP component if other PHP code
uses the same class names? We can safely use the symfony/httpfoundation compo‐
nent precisely because its code is sandboxed beneath the unique Symfony vendor
namespace. Visit the symfony/httpfoundation component on GitHub and navigate
to the Response.php file. It looks like Figure 2-1.

Figure 2-1. GitHub symfony/httpfoundation screenshot

Look closely at line 12. It contains this code:

namespace Symfony\Component\HttpFoundation;

6 | Chapter 2: Features

https://github.com/symfony/HttpFoundation
https://github.com/symfony/HttpFoundation
http://bit.ly/response-php

This is a PHP namespace declaration, and it always appears on a new line immedi‐
ately after the opening <?php tag. This particular namespace declaration tells us
several things. First, we know the Response class lives beneath the Symfony vendor
namespace (the vendor namespace is the topmost namespace). We know the
Response class lives beneath the Component subnamespace. We also know the
Response class lives beneath yet another subnamespace named HttpFoundation. You
can view other files adjacent to Response.php, and you’ll see they use the same name‐
space declaration. A namespace (or subnamespace) encapsulates and organizes
related PHP classes, just as a filesystem directory contains related files.

Subnamespaces are separated with a \ character.

Unlike your operating system’s physical filesystem, PHP namespaces are a virtual
concept and do not necessarily map 1:1 with filesystem directories. That being said,
most PHP components do, in fact, map subnamespaces to filesystem directories for
compatibility with the popular PSR-4 autoloader standard (we’ll talk more about this
in Chapter 3).

Technically speaking, namespaces are merely a PHP language nota‐
tion referenced by the PHP interpreter to apply a common name
prefix to a set of classes, interfaces, functions, and constants.

Why We Use Namespaces
Namespaces are important because they let us create sandboxed code that works
alongside other developers’ code. This is the cornerstone concept of the modern PHP
component ecosystem. Component and framework authors build and distribute code
for a large number of PHP developers, and they have no way of knowing or control‐
ling what classes, interfaces, functions, and constants are used alongside their own
code. This problem applies to your own in-house projects, too. If you write custom
PHP components or classes for a project, that code must work alongside your proj‐
ect’s third-party dependencies.

As I mentioned earlier with the symfony/httpfoundation component, your code and
other developers’ code might use the same class, interface, function, or constant
names. Without namespaces, a name collision causes PHP to fail. With namespaces,
your code and other developers’ code can use the same class, interface, function, or
constant name assuming your code lives beneath a unique vendor namespace.

Namespaces | 7

If you’re building a tiny personal project with only a few dependencies, class name
collisions probably won’t be an issue. But when you’re working on a team building a
large project with numerous third-party dependencies, name collisions become a
very real concern. You cannot control which classes, interfaces, functions, and con‐
stants are introduced into the global namespace by your project’s dependencies. This
is why namespacing your code is important.

Declaration
Every PHP class, interface, function, and constant lives beneath a namespace (or sub‐
namespace). Namespaces are declared at the top of a PHP file on a new line immedi‐
ately after the opening <?php tag. The namespace declaration begins with namespace,
then a space character, then the namespace name, and then a closing semicolon ;
character.

Remember that namespaces are often used to establish a top-level vendor name. This
example namespace declaration establishes the Oreilly vendor name:

<?php
namespace Oreilly;

All PHP classes, interfaces, functions, or constants declared beneath this namespace
declaration live in the Oreilly namespace and are, in some way, related to O’Reilly
Media. What if we wanted to organize code related to this book? We use a subname‐
space.

Subnamespaces are declared exactly the same as in the previous example. The only
difference is that we separate namespace and subnamespace names with the \ charac‐
ter. The following example declares a subnamespace named ModernPHP that lives
beneath the topmost Oreilly vendor namespace:

<?php
namespace Oreilly\ModernPHP;

All classes, interfaces, functions, and constants declared beneath this namespace dec‐
laration live in the Oreilly\ModernPHP subnamespace and are, in some way, related
to this book.

All classes in the same namespace or subnamespace don’t have to be declared in the
same PHP file. You can specify a namespace or subnamespace at the top of any PHP
file, and that file’s code becomes a part of that namespace or subnamespace. This
makes it possible to write multiple classes in separate files that belong to a common
namespace.

8 | Chapter 2: Features

The most important namespace is the vendor namespace. This is
the topmost namespace that identifies your brand or organization,
and it must be globally unique. Subnamespaces are less important,
but they are helpful for organizing your project’s code.

Import and Alias
Before we had namespaces, PHP developers solved the name collision problem with
Zend-style class names. This was a class-naming scheme popularized by the Zend
Framework where PHP class names used underscores in lieu of filesystem directory
separators. This convention accomplished two things: it ensured class names were
unique, and it enabled a naive autoloader implementation that replaced underscores
in PHP class names with filesystem directory separators to determine the class file
path.

For example, the PHP class Zend_Cloud_DocumentService_Adapter_WindowsA

zure_Query corresponds to the PHP file Zend/Cloud/DocumentService/Adapter/
WindowsAzure/Query.php. A side effect of the Zend-style naming convention, as you
can see, is absurdly long class names. Call me lazy, but there’s no way I’m typing that
class name more than once.

Modern PHP namespaces present a similar problem. For example, the full Response
class name in the symfony\httpfoundation component is \Symfony\Component
\HttpFoundation\Response. Fortunately, PHP lets us import and alias namespaced
code.

By import, I mean that I tell PHP which namespaces, classes, interfaces, functions,
and constants I will use in each PHP file. I can then use these without typing their full
namespaces.

By alias, I mean that I tell PHP that I will reference an imported class, interface, func‐
tion, or constant with a shorter name.

You can import and alias PHP classes, interfaces, and other name‐
spaces as of PHP 5.3. You can import and alias PHP functions and
constants as of PHP 5.6.

The code shown in Example 2-1 creates and sends a 400 Bad Request HTTP
response without importing and aliasing.

Namespaces | 9

Example 2-1. Namespace without alias

<?php
$response = new \Symfony\Component\HttpFoundation\Response('Oops', 400);
$response->send();

This isn’t terrible, but imagine you have to instantiate a Response instance several
times in a single PHP file. Your fingers will get tired quickly. Now look at
Example 2-2. It does the same thing with importing.

Example 2-2. Namespace with default alias

<?php
use Symfony\Component\HttpFoundation\Response;

$response = new Response('Oops', 400);
$response->send();

We tell PHP we intend to use the Symfony\Component\HttpFoundation\Response
class with the use keyword. We type the long, fully qualified class name once. Then
we can instantiate the Response class without using its fully namespaced class name.
How cool is that?

Some days I feel really lazy. This is a good opportunity to use an alias. Let’s extend
Example 2-2. Instead of typing Response, maybe I just want to type Res instead.
Example 2-3 shows how I can do that.

Example 2-3. Namespace with custom alias

<?php
use Symfony\Component\HttpFoundation\Response as Res;

$r = new Res('Oops', 400);
$r->send();

In this example, I changed the import line to import the Response class. I also
appended as Res to the end of the import line; this tells PHP to consider Res an alias
for the Response class. If we don’t append the as Res alias to the import line, PHP
assumes a default alias that is the same as the imported class name.

10 | Chapter 2: Features

You should import code with the use keyword at the top of each
PHP file, immediately after the opening <?php tag or namespace
declaration.
You don’t need a leading \ character when importing code with the
use keyword because PHP assumes imported namespaces are fully
qualified.
The use keyword must exist in the global scope (i.e., not inside of a
class or function) because it is used at compile time. It can, how‐
ever, be located beneath a namespace declaration to import code
into another namespace.

As of PHP 5.6, it’s possible to import functions and constants. This requires a tweak
to the use keyword syntax. To import a function, change use to use func:

<?php
use func Namespace\functionName;

functionName();

To import a constant, change use to use constant:

<?php
use constant Namespace\CONST_NAME;

echo CONST_NAME;

Function and constant aliases work the same as classes.

Helpful Tips

Multiple imports
If you import multiple classes, interfaces, functions, or constants into a single PHP
file, you’ll end up with multiple use statements at the top of your PHP file. PHP
accepts a shorthand import syntax that combines multiple use statements on a single
line like this:

<?php
use Symfony\Component\HttpFoundation\Request,
 Symfony\Component\HttpFoundation\Response,
 Symfony\Component\HttpFoundation\Cookie;

Don’t do this. It’s confusing and easy to mess up. I recommend you keep each use
statement on its own line like this:

<?php
use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpFoundation\Response;
use Symfony\Component\HttpFoundation\Cookie;

Namespaces | 11

You’ll type a few extra characters, but your code is easier to read and troubleshoot.

Multiple namespaces in one file
PHP lets you define multiple namespaces in a single PHP file like this:

<?php
namespace Foo {
 // Declare classes, interfaces, functions, and constants here
}

namespace Bar {
 // Declare classes, interfaces, functions, and constants here
}

This is confusing and violates the recommended one class per file good practice. Use
only one namespace per file to make your code simpler and easier to troubleshoot.

Global namespace
If you reference a class, interface, function, or constant without a namespace, PHP
assumes the class, interface, function, or constant lives in the current namespace. If
this assumption is wrong, PHP attempts to resolve the class, interface, function, or
constant. If you need to reference a namespaced class, interface, function, or constant
inside another namespace, you must use the fully qualified PHP class name (name‐
space + class name). You can type the fully qualified PHP class name, or you can
import the code into the current namespace with the use keyword.

Some code might not have a namespace and, therefore, lives in the global namespace.
The native Exception class is a good example. You can reference globally namespaced
code inside another namespace by prepending a \ character to the class, interface,
function, or constant name. For example, the \My\App\Foo::doSomething() method
in Example 2-4 fails because PHP searches for a \My\App\Exception class that does
not exist.

Example 2-4. Unqualified class name inside another namespace

<?php
namespace My\App;

class Foo
{
 public function doSomething()
 {
 $exception = new Exception();
 }
}

12 | Chapter 2: Features

Instead, add a \ prefix to the Exception class name, as shown in Example 2-5. This
tells PHP to look for the Exception class in the global namespace instead of the cur‐
rent namespace.

Example 2-5. Qualified class name inside another namespace

<?php
namespace My\App;

class Foo
{
 public function doSomething()
 {
 throw new \Exception();
 }
}

Autoloading
Namespaces also provide the bedrock for the PSR4 autoloader standard created by
the PHP Framework Interop Group (PHP-FIG). This autoloader pattern is used by
most modern PHP components, and it lets us autoload project dependencies using
the Composer dependency manager. We’ll talk about Composer and the PHP-FIG in
Chapter 4. For now, just understand that the modern PHP ecosystem and its emerg‐
ing component-based architecture would be impossible without namespaces.

Code to an Interface
Learning how to code to an interface changed my life as a PHP programmer, and it
profoundly improved my ability to integrate third-party PHP components into my
own applications. Interfaces are not a new feature, but they are an important feature
that you should know about and use on a daily basis.

So what is a PHP interface? An interface is a contract between two PHP objects that
lets one object depend not on what another object is but, instead, on what another
object can do. An interface decouples our code from its dependencies, and it allows
our code to depend on any third-party code that implements the expected interface.
We don’t care how the third-party code implements the interface; we care only that
the third-party code does implement the interface. Here’s a more down-to-earth
example.

Let’s pretend I just arrived in Miami, Florida for the Sunshine PHP Developer Con‐
ference. I need a way to get around town, so I head straight for the local car rental
place. They have a tiny Hyundai compact, a Subaru wagon, and (much to my sur‐
prise) a Bugatti Veyron. I know I need a way to get around town, and all three vehi‐
cles can help me do that. But each vehicle does so differently. The Hyundai Accent is

Code to an Interface | 13

OK, but I’d like something with a bit more oomph. I don’t have kids, so the wagon has
more seating than I need. I’ll take the Bugatti, please.

The reality is that I can drive any of these three cars because they all share a common
and expected interface. Each car has a steering wheel, a gas pedal, a brake pedal, and
turn signals, and each uses gasoline for fuel. The Bugatti is probably more power than
I can handle, but the driving interface is the same as the Hyundai’s. Because all three
cars share the same expected interface, and I have the opportunity to choose my pre‐
ferred vehicle (and if we’re being honest, I’d probably go with the Hyundai).

This is the exact same concept in object-oriented PHP. If I write code that expects an
object of a specific class (and therefore a specific implementation), my code’s utility is
inherently limited because it can only use objects of that one class, forever. However,
if I write code that expects an interface, my code immediately knows how to use any
object that implements that interface. My code does not care how the interface is
implemented; my code cares only that the interface is implemented. Let’s drive this
home with a demo.

I have a hypothetical PHP class named DocumentStore that collects text from differ‐
ent sources: it fetches HTML from remote URLs; it reads stream resources; and it col‐
lects terminal command output. Each document stored in a DocumentStore instance
has a unique ID. Example 2-6 shows the DocumentStore class.

Example 2-6. DocumentStore class definition

class DocumentStore
{
 protected $data = [];

 public function addDocument(Documentable $document)
 {
 $key = $document->getId();
 $value = $document->getContent();
 $this->data[$key] = $value;
 }

 public function getDocuments()
 {
 return $this->data;
 }
}

How exactly does this work if the addDocument() method only accepts instances of
the Documentable class? That’s a good observation. However, Documentable is not a
class. It’s an interface, and it looks like Example 2-7.

14 | Chapter 2: Features

Example 2-7. Documentable interface definition

interface Documentable
{
 public function getId();

 public function getContent();
}

This interface definition says that any object implementing the Documentable inter‐
face must provide a public getId() method and a public getContent() method.

So how exactly is this helpful? It’s helpful because we can create separate document-
fetching classes with wildly different implementations. Example 2-8 shows an imple‐
mentation that can fetch HTML from a remote URL with curl.

Example 2-8. HtmlDocument class definition

class HtmlDocument implements Documentable
{
 protected $url;

 public function __construct($url)
 {
 $this->url = $url;
 }

 public function getId()
 {
 return $this->url;
 }

 public function getContent()
 {
 $ch = curl_init();
 curl_setopt($ch, CURLOPT_URL, $this->url);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
 curl_setopt($ch, CURLOPT_CONNECTTIMEOUT, 3);
 curl_setopt($ch, CURLOPT_FOLLOWLOCATION, 1);
 curl_setopt($ch, CURLOPT_MAXREDIRS, 3);
 $html = curl_exec($ch);
 curl_close($ch);

 return $html;
 }
}

Another implementation (Example 2-9) can read a stream resource.

Code to an Interface | 15

Example 2-9. StreamDocument class definition

class StreamDocument implements Documentable
{
 protected $resource;
 protected $buffer;

 public function __construct($resource, $buffer = 4096)
 {
 $this->resource = $resource;
 $this->buffer = $buffer;
 }

 public function getId()
 {
 return 'resource-' . (int)$this->resource;
 }

 public function getContent()
 {
 $streamContent = '';
 rewind($this->resource);
 while (feof($this->resource) === false) {
 $streamContent .= fread($this->resource, $this->buffer);
 }

 return $streamContent;
 }
}

And another implementation (Example 2-10) can fetch the result of a terminal
command.

Example 2-10. StreamDocument class definition

class CommandOutputDocument implements Documentable
{
 protected $command;

 public function __construct($command)
 {
 $this->command = $command;
 }

 public function getId()
 {
 return $this->command;
 }

 public function getContent()
 {

16 | Chapter 2: Features

 return shell_exec($this->command);
 }
}

Example 2-11 shows how we can use the DocumentStore class with our three
document-collecting implementations.

Example 2-11. DocumentStore

<?php
$documentStore = new DocumentStore();

// Add HTML document
$htmlDoc = new HtmlDocument('https://php.net');
$documentStore->addDocument($htmlDoc);

// Add stream document
$streamDoc = new StreamDocument(fopen('stream.txt', 'rb'));
$documentStore->addDocument($streamDoc);

// Add terminal command document
$cmdDoc = new CommandOutputDocument('cat /etc/hosts');
$documentStore->addDocument($cmdDoc);

print_r($documentStore->getDocuments());

This is really cool because the HtmlDocument, StreamDocument, and CommandOutputDo
cument classes have nothing in common other than a common interface.

At the end of the day, coding to an interface creates more-flexible code that delegates
implementation concerns to others. Many more people (e.g., your office buddies,
your open source project’s users, or developers you’ve never met) can write code that
works seamlessly with your code by knowing nothing more than an interface.

Traits
Many of my PHP developer friends are confused by traits, a new concept introduced
in PHP 5.4.0. Traits behave like classes but look like interfaces. Which one are they?
Neither and both.

A trait is a partial class implementation (i.e., constants, properties, and methods) that
can be mixed into one or more existing PHP classes. Traits work double duty: they say
what a class can do (like an interface), and they provide a modular implementation
(like a class).

Traits | 17

You may be familiar with traits in other languages. For example,
PHP traits are similar to Ruby’s composable modules, or mixins.

Why We Use Traits
The PHP language uses a classical inheritance model. This means you start with a
single generalized root class that provides a base implementation. You extend the root
class to create more specialized classes that inherit their immediate parent’s imple‐
mentation. This is called an inheritance hierarchy, and it is a common pattern used by
many programming languages.

If it helps, picture yourself back in grade school Biology. Remem‐
ber how you learned about the biological classification system?
There are six kingdoms. Each kingdom is extended by phyla. Each
phylum is extended by biological classes. Classes are extended by
orders, orders by families, families by genera, and genera by spe‐
cies. Each hierarchy extension represents further specialization.

The classical inheritance model works well most of the time. However, what do we do
if two unrelated PHP classes need to exhibit similar behavior? For example, a PHP
class RetailStore and another PHP class Car are very different classes and don’t
share a common parent in their inheritance hierarchies. However, both classes should
be geocodable into latitude and longitude coordinates for display on a map.

Traits were created for exactly this purpose. They enable modular implementations
that can be injected into otherwise unrelated classes. Traits also encourage code reuse.

My first (bad) reaction is to create a common parent class Geocodable that both
RetailStore and Car extend. This is a bad solution because it forces two otherwise
unrelated classes to share a common ancestor that does not naturally belong in either
inheritance hierarchy.

My second (better) reaction is to create a Geocodable interface that defines which
methods are required to implement the geocoding behavior. The RetailStore and
Car classes can both implement the Geocodable interface. This is a good solution that
allows each class to retain its natural inheritance hierarchy, but it requires us to dupli‐
cate the same geocoding behavior in both classes. This is not a DRY solution.

DRY is an acronym for Do not repeat yourself. It’s considered a
good practice never to duplicate the same code in multiple loca‐
tions. You should not need to change code in one location because
you changed code in another location. Read more on Wikipedia.

18 | Chapter 2: Features

http://bit.ly/no-repeat

My third (best) reaction is to create a Geocodable trait that defines and implements
the geocodable methods. I can then mix the Geocodable trait into both the Retail
Store and Car classes without polluting their natural inheritance hierarchies.

How to Create a Trait
Here’s how you define a PHP trait:

<?php
trait MyTrait {
 // Trait implementation goes here
}

It is considered a good practice to define only one trait per file, just
like class and interface definitions.

Let’s return to our Geocodable example to better demonstrate traits in practice. We
agree both RetailStore and Car classes need to provide geocodable behavior, and
we’ve decided inheritance and interfaces are not the best solution. Instead, we create a
Geocodable trait that returns latitude and longitude coordinates that we can plot on a
map. Our complete Geocodable trait looks like Example 2-12.

Example 2-12. The Geocodable trait definition

<?php
trait Geocodable {
 /** @var string */
 protected $address;

 /** @var \Geocoder\Geocoder */
 protected $geocoder;

 /** @var \Geocoder\Result\Geocoded */
 protected $geocoderResult;

 public function setGeocoder(\Geocoder\GeocoderInterface $geocoder)
 {
 $this->geocoder = $geocoder;
 }

 public function setAddress($address)
 {
 $this->address = $address;
 }

 public function getLatitude()

Traits | 19

 {
 if (isset($this->geocoderResult) === false) {
 $this->geocodeAddress();
 }

 return $this->geocoderResult->getLatitude();
 }

 public function getLongitude()
 {
 if (isset($this->geocoderResult) === false) {
 $this->geocodeAddress();
 }

 return $this->geocoderResult->getLongitude();
 }

 protected function geocodeAddress()
 {
 $this->geocoderResult = $this->geocoder->geocode($this->address);

 return true;
 }
}

The Geocodable trait defines only the properties and methods necessary to imple‐
ment the geocodable behavior. It does not do anything else.

Our Geocodable trait defines three class properties: an address (string), a geocoder
object (an instance of \Geocoder\Geocoder from the excellent willdurand/geocoder
component by William Durand), and a geocoder result object (an instance of \Geo
coder\Result\Geocoded). We also define four public methods and one protected
method. The setGeocoder() method is used to inject the Geocoder object. The setAd
dress() method is used to set an address. The getLatitude() and getLongitude()
methods return their respective coordinates. And the geocodeAddress() method
passes the address string into the Geocoder instance to retrieve the geocoder result.

How to Use a Trait
Using a PHP trait is easy. Add the code use MyTrait; inside a PHP class definition.
Here’s an example. Obviously, replace MyTrait with the appropriate PHP trait name:

<?php
class MyClass
{
 use MyTrait;

 // Class implementation goes here
}

20 | Chapter 2: Features

http://geocoder-php.org

Both namespaces and traits are imported with the use keyword.
Where they are imported is different. We import namespaces,
classes, interfaces, functions, and constants outside of a class defini‐
tion. We import traits inside a class definition. The difference is
subtle but important.

Let’s return to our Geocodable example. We defined the Geocodable trait in
Example 2-12. Let’s update our RetailStore class so that it uses the Geocodable trait
(Example 2-13). For the sake of brevity, I do not provide the complete RetailStore
class implementation.

Example 2-13. The RetailStore class definition

<?php
class RetailStore
{
 use Geocodable;

 // Class implementation goes here
}

That’s all we have to do. Now each RetailStore instance can use the properties and
methods provided by the Geocodable trait, as shown in Example 2-14.

Example 2-14. Traits

<?php
$geocoderAdapter = new \Geocoder\HttpAdapter\CurlHttpAdapter();
$geocoderProvider = new \Geocoder\Provider\GoogleMapsProvider($geocoderAdapter);
$geocoder = new \Geocoder\Geocoder($geocoderProvider);

$store = new RetailStore();
$store->setAddress('420 9th Avenue, New York, NY 10001 USA');
$store->setGeocoder($geocoder);

$latitude = $store->getLatitude();
$longitude = $store->getLongitude();
echo $latitude, ':', $longitude;

The PHP interpreter copies and pastes traits into class definitions
at compile time, and it does not protect against incompatibilities
introduced by this action. If your PHP trait assumes a class prop‐
erty or method exists (that is not defined in the trait itself), be sure
those properties and methods exist in the appropriate classes.

Traits | 21

Generators
PHP generators are an underutilized yet remarkably helpful feature introduced in
PHP 5.5.0. I think many PHP developers are unaware of generators because their
purpose is not immediately obvious. Generators are simple iterators. That’s it.

Unlike your standard PHP iterator, PHP generators don’t require you to implement
the Iterator interface in a heavyweight class. Instead, generators compute and yield
iteration values on-demand. This has profound implications for application perfor‐
mance. Think about it. A standard PHP iterator often iterates in-memory, precompu‐
ted data sets. This is inefficient, especially with large and formulaic data sets that can
be computed instead. This is why we use generators to compute and yield subsequent
values on the fly without commandeering valuable memory.

PHP generators are not a panacea for your iteration needs. Because
generators never know the next iteration value until asked, it’s
impossible to rewind or fast-forward a generator. You can iterate in
only one direction—forward. Generators are also a once-and-done
deal. You can’t iterate the same generator more than once. How‐
ever, you are free to rebuild or clone a generator if necessary.

Create a Generator
Generators are easy to create because they are just PHP functions that use the yield
keyword one or more times. Unlike regular PHP functions, generators never return a
value. They only yield values. Example 2-15 shows a simple generator.

Example 2-15. Simple generator

<?php
function myGenerator() {
 yield 'value1';
 yield 'value2';
 yield 'value3';
}

Pretty simple, huh? When you invoke the generator function, PHP returns an object
that belongs to the Generator class. This object can be iterated with the foreach()
function. During each iteration, PHP asks the Generator instance to compute and
provide the next iteration value. What’s neat is that the generator pauses its internal
state whenever it yields a value. The generator resumes internal state when it is asked
for the next value. The generator continues pausing and resuming until it reaches the
end of its function definition or an empty return; statement. We can invoke and iter‐
ate the generator in Example 2-15 like this:

22 | Chapter 2: Features

<?php
foreach (myGenerator() as $yieldedValue) {
 echo $yieldedValue, PHP_EOL;
}

This outputs:

value1
value2
value3

Use a Generator
I like to demonstrate how a PHP generator saves memory by implementing a simple
range() function. First, let’s do it the wrong way (Example 2-16).

Example 2-16. Range generator (bad)

<?php
function makeRange($length) {
 $dataset = [];
 for ($i = 0; $i < $length; $i++) {
 $dataset[] = $i;
 }

 return $dataset;
}

$customRange = makeRange(1000000);
foreach ($customRange as $i) {
 echo $i, PHP_EOL;
}

Example 2-16 makes poor use of memory. The makeRange() method in Example 2-16
allocates one million integers into a precomputed array. A PHP generator can do the
same thing while allocating memory for only one integer at any given time, as shown
in Example 2-17.

Example 2-17. Range generator (good)

<?php
function makeRange($length) {
 for ($i = 0; $i < $length; $i++) {
 yield $i;
 }
}

foreach (makeRange(1000000) as $i) {
 echo $i, PHP_EOL;
}

Generators | 23

This is a contrived example. However, just imagine all of the potential data sets that
you can compute. Number sequences (e.g., Fibonacci) are an obvious candidate. You
can also iterate a stream resource. Imagine you need to iterate a 4 GB comma-
separated value (CSV) file and your virtual private server (VPS) has only 1 GB of
memory available to PHP. There’s no way you can pull the entire file into memory.
Example 2-18 shows how we can use a generator instead!

Example 2-18. CSV generator

<?php
function getRows($file) {
 $handle = fopen($file, 'rb');
 if ($handle === false) {
 throw new Exception();
 }
 while (feof($handle) === false) {
 yield fgetcsv($handle);
 }
 fclose($handle);
}

foreach (getRows('data.csv') as $row) {
 print_r($row);
}

This example allocates memory for only one CSV row at a time instead of reading the
entire 4 GB CSV file into memory. It also encapsulates the iteration implementation
into a tidy package; this lets us quickly change how we get data (e.g., CSV, XML,
JSON) without interrupting our application code that iterates the data.

Generators are a tradeoff between versatility and simplicity. Generators are forward-
only iterators. This means you cannot use a generator to rewind, fast-forward, or seek
a data set. You can only ask a generator to compute and yield its next value. Genera‐
tors are most useful for iterating large or numerically sequenced data sets with only a
tiny amount of system memory. They are also useful for accomplishing the same sim‐
ple tasks as larger iterators with less code.

Generators do not add functionality to PHP. You can do what generators do without a
generator. However, generators greatly simply certain tasks while using less memory.
If you require more versatility to rewind, fast-forward, or seek through a data set,
you’re better off writing a custom class that implements the Iterator interface, or
using one of PHP’s prebuilt Standard PHP Library (SPL) iterators.

24 | Chapter 2: Features

http://php.net/manual/class.iterator.php
http://php.net/manual/spl.iterators.php

For more generator examples, read What Generators Can Do For
You by Anthony Ferrara (@ircmaxell on Twitter).

Closures
Closures and anonymous functions were introduced in PHP 5.3.0, and they’re two of
my favorite and most used PHP features. They sound scary (at least I thought so
when I first learned about them), but they’re actually pretty simple to understand.
They’re extremely useful tools that every PHP developer should have in the toolbox.

A closure is a function that encapsulates its surrounding state at the time it is created.
The encapsulated state exists inside the closure even when the closure lives after its
original environment ceases to exist. This is a difficult concept to grasp, but once you
do it’ll be a life-changing moment.

An anonymous function is exactly that—a function without a name. Anonymous
functions can be assigned to variables and passed around just like any other PHP
object. But it’s still a function, so you can invoke it and pass it arguments. Anony‐
mous functions are especially useful as function or method callbacks.

Closures and anonymous functions are, in theory, separate things.
However, PHP considers them to be one and the same. So when I
say closure, I also mean anonymous function. And vice versa.

PHP closures and anonymous functions use the same syntax as a function, but don’t
let them fool you. They’re actually objects disguised as PHP functions. If you inspect a
PHP closure or anonymous function, you’ll find they are instances of the Closure
class. Closures are considered first-class value types, just like a string or integer.

Create
So we know PHP closures look like functions. You should not be surprised, then, that
you create a PHP closure like Example 2-19.

Example 2-19. Simple closure

<?php
$closure = function ($name) {
 return sprintf('Hello %s', $name);
};

Closures | 25

http://bit.ly/ircmaxwell
http://bit.ly/ircmaxwell
https://twitter.com/ircmaxell

echo $closure("Josh");
// Outputs --> "Hello Josh"

That’s it. Example 2-19 creates a closure object and assigns it to the $closure variable.
It looks like a standard PHP function: it uses the same syntax, it accepts arguments,
and it returns a value. However, it does not have a name.

We can invoke the $closure variable because the variable’s value is
a closure, and closure objects implement the __invoke() magic
method. PHP looks for and calls the __invoke() method whenever
() follows a variable name.

I typically use PHP closure objects as function and method callbacks. Many PHP
functions expect callback functions, like array_map() and preg_replace_call
back(). This is a perfect opportunity to use PHP anonymous functions! Remember,
closures can be passed into other PHP functions as arguments, just like any other
value. In Example 2-20, I use a closure object as a callback argument in the
array_map() function.

Example 2-20. array_map closure

<?php
$numbersPlusOne = array_map(function ($number) {
 return $number + 1;
}, [1,2,3]);
print_r($numbersPlusOne);
// Outputs --> [2,3,4]

OK, so that wasn’t that impressive. But remember, before closures PHP developers
had no choice but to create a separate named function and refer to that function by
name. This was slightly slower to execute, and it segregated a callback’s implementa‐
tion from its usage. Old-school PHP developers used code like this:

<?php
// Named callback implementation
function incrementNumber ($number) {
 return $number + 1;
}

// Named callback usage
$numbersPlusOne = array_map('incrementNumber', [1,2,3]);
print_r($numbersPlusOne);

This code works, but it’s not as succinct and tidy as Example 2-20. We don’t need a
separate incrementNumber() named function if we use the function only once as a
callback. Closures used as callbacks create more concise and legible code.

26 | Chapter 2: Features

Attach State
So far I’ve demonstrated nameless (or anonymous) functions used as callbacks. Let’s
explore how to attach and enclose state with a PHP closure. JavaScript developers
might be confused by PHP closures because they do not automatically enclose appli‐
cation state like true JavaScript closures. Instead, you must manually attach state to a
PHP closure with the closure object’s bindTo() method or the use keyword.

It’s far more common to attach closure state with the use keyword, so let’s look at that
first (Example 2-21). When you attach a variable to a closure via the use keyword, the
attached variable retains the value assigned to it at the time it is attached to the closure.

Example 2-21. Attaching closure state with use keyword

<?php
function enclosePerson($name) {
 return function ($doCommand) use ($name) {
 return sprintf('%s, %s', $name, $doCommand);
 };
}

// Enclose "Clay" string in closure
$clay = enclosePerson('Clay');

// Invoke closure with command
echo $clay('get me sweet tea!');
// Outputs --> "Clay, get me sweet tea!"

In Example 2-21, the enclosePerson() named function accepts a $name argument,
and it returns a closure object that encloses the $name argument. The returned closure
object preserves the $name argument’s value even after the closure exits the enclose
Person() function’s scope. The $name variable still exists in the closure!

You can pass multiple arguments into a closure with the use key‐
word. Separate multiple arguments with a comma, just as you do
with any PHP function or method arguments.

Don’t forget, PHP closures are objects. Each closure instance has its own internal
state that is accessible with the $this keyword just like any other PHP object. A clo‐
sure object’s default state is pretty boring; it has a magic __invoke() method and a
bindTo() method. That’s it.

However, the bindTo() method opens the door to some interesting possibilities. This
method lets us bind a Closure object’s internal state to a different object. The
bindTo() method accepts an important second argument that specifies the PHP class

Closures | 27

of the object to which the closure is bound. This lets the closure access protected and
private member variables of the object to which it is bound.

You’ll find the bindTo() method is often used by PHP frameworks that map route
URLs to anonymous callback functions. Frameworks accept an anonymous function
and bind it to the application object. This lets you reference the primary application
object inside the anonymous function with the $this keyword, as shown in
Example 2-22.

Example 2-22. Attaching closure state with the bindTo method

01. <?php
02. class App
03. {
04. protected $routes = array();
05. protected $responseStatus = '200 OK';
06 protected $responseContentType = 'text/html';
07. protected $responseBody = 'Hello world';
08.
09. public function addRoute($routePath, $routeCallback)
10. {
11. $this->routes[$routePath] = $routeCallback->bindTo($this, __CLASS__);
12. }
13.
14. public function dispatch($currentPath)
15. {
16. foreach ($this->routes as $routePath => $callback) {
17. if ($routePath === $currentPath) {
18. $callback();
19. }
20. }
21.
22. header('HTTP/1.1 ' . $this->responseStatus);
23. header('Content-type: ' . $this->responseContentType);
24. header('Content-length: ' . mb_strlen($this->responseBody));
25. echo $this->responseBody;
26. }
27. }

Pay close attention to the addRoute() method. It accepts a route path (e.g., /users/
josh) and a route callback. The dispatch() method accepts the current HTTP
request path and invokes the matching route callback. The magic happens on line 11
when we bind the route callback to the current App instance. This lets us create a call‐
back function that can manipulate the App instance state:

<?php
$app = new App();
$app->addRoute('/users/josh', function () {
 $this->responseContentType = 'application/json;charset=utf8';

28 | Chapter 2: Features

 $this->responseBody = '{"name": "Josh"}';
});
$app->dispatch('/users/josh');

Zend OPcache
Bytecode caches are not new to PHP. We’ve had optional standalone extensions like
Alternative PHP Cache (APC), eAccelerator, ionCube, and XCache. But none of these
was built into the PHP core distribution until now. As of PHP 5.5.0, PHP has its own
built-in bytecode cache called Zend OPcache.

First, let me explain what a bytecode cache is and why it is important. PHP is an inter‐
preted language. When the PHP interpreter executes a PHP script, the interpreter
parses the PHP script code, compiles the PHP code into a set of existing Zend
Opcodes (machine-code instructions), and executes the bytecode. This happens for
each PHP file during every request. This is a lot of overhead, especially if PHP must
parse, compile, and execute PHP scripts over and over again for every HTTP request.
If only there were a way to cache precompiled bytecode to reduce application
response times and reduce stress on our system resources. You’re in luck.

A bytecode cache stores precompiled PHP bytecode. This means the PHP interpreter
does not need to read, parse, and compile PHP code on every request. Instead, the
PHP interpreter can read the precompiled bytecode from memory and execute it
immediately. This is a huge timesaver and can drastically improve application
performance.

Enable Zend OPcache
Zend OPcache isn’t enabled by default; you must explicitly enable Zend OPcache
when you compile PHP.

If you choose a shared web host, be sure you choose a good hosting
company that provides PHP 5.5.0 or newer with Zend OPcache
enabled.

If you compile PHP yourself (i.e., on a VPS or dedicated server), you must include
this option in your PHP ./configure command:

--enable-opcache

After you compile PHP, you must also specify the path to the Zend OPcache exten‐
sion in your php.ini file with this line:

zend_extension=/path/to/opcache.so

Zend OPcache | 29

http://bit.ly/zend-opcode
http://bit.ly/zend-opcode

The Zend OPcache extension file path is displayed immediately after PHP compiles
successfully. If you forget to look for this as I often do, you can also find the PHP
extension directory with this command:

php-config --extension-dir

If you use the popular Xdebug profiler by the incomparable Derick
Rethans, your php.ini file must load the Zend OPcache extension
before Xdebug.

After you update the php.ini file, restart the PHP process and you’re ready to go. You
can confirm Zend OPcache is working correctly by creating a PHP file with this
content:

<?php
phpinfo();

View this PHP file in a web browser and scroll down until you see the Zend OPcache
extension section shown in Figure 2-2. If you don’t see this section, Zend OPcache is
not running.

Figure 2-2. Zend OPcache INI settings

30 | Chapter 2: Features

http://xdebug.org

Configure Zend OPcache
When Zend OPcache is enabled, you should configure the Zend OPcache settings in
your php.ini configuration file. Here are the OPcache settings I like to use:

opcache.validate_timestamps = 1 // "0" in production
opcache.revalidate_freq = 0
opcache.memory_consumption = 64
opcache.interned_strings_buffer = 16
opcache.max_accelerated_files = 4000
opcache.fast_shutdown = 1

Learn more about these Zend OPcache settings in Chapter 8. Find
a complete list of Zend OPcache settings at PHP.net.

Use Zend OPcache
This part’s easy because the Zend OPcache works automatically when enabled. Zend
OPcache automatically caches precompiled PHP bytecode in memory and executes
the bytecode if available.

Be careful if the opcache.validate_timestamps INI directive is false. When this set‐
ting is false, the Zend OPcache does not know about changes to your PHP scripts,
and you must manually clear Zend OPcache’s bytecode cache before it recognizes
changes to your PHP files. This setting is good for production but inconvenient for
development. You can enable automatic cache revalidation with these php.ini configu‐
ration settings:

opcache.validate_timestamps=1
opcache.revalidate_freq=0

Built-in HTTP server
Did you know that PHP has a built-in web server as of PHP 5.4.0? This is another
hidden gem unknown to PHP developers who assume they need Apache or nginx to
preview PHP applications. You shouldn’t use it for production, but PHP’s built-in web
server is a perfect tool for local development.

I use PHP’s built-in web server every day, whether I’m writing PHP or not. I use it to
preview Laravel and Slim Framework applications. I use it while building websites
with the Drupal content-management framework. I also use it to preview static
HTML and CSS if I’m just building out markup.

Built-in HTTP server | 31

http://bit.ly/php-config
http://laravel.com
http://slimframework.com

Remember, the PHP built-in server is a web server. It speaks HTTP,
and it can serve static assets in addition to PHP files. It’s a great way
to write and preview HTML locally without installing MAMP,
WAMP, or a heavyweight web server.

Start the Server
It’s easy to start the PHP web server. Open your terminal application, navigate to your
project’s document root directory, and execute this command:

php -S localhost:4000

This command starts a new PHP web server accessible at localhost. It listens on port
4000. Your current working directory is the web server’s document root.

You can now open your web browser and navigate to http://localhost:4000 to preview
your application. As you browse your application in your web browser, each HTTP
request is logged to standard out in your terminal application so you can see if you
application throws 400 or 500 responses.

Sometimes it’s useful to access the PHP web server from other machines on your
local network (e.g., for previewing on your iPad or local Windows box). To do this,
tell the PHP web server to listen on all interfaces by using 0.0.0.0 instead of
localhost:

php -S 0.0.0.0:4000

When you are ready to stop the PHP web server, close your terminal application or
press Ctrl+C.

Configure the Server
It’s not uncommon for an application to require its own PHP INI configuration file,
especially if it has unique requirements for memory usage, file uploads, profiling, or
bytecode caching. You can tell the PHP built-in server to use a specific INI file with
the -c option:

php -S localhost:8000 -c app/config/php.ini

It’s a good idea to keep the custom INI file beneath the application’s
root directory and, optionally, version-control the INI file if it
should be shared with other developers on your team.

32 | Chapter 2: Features

http://localhost:4000

Router Scripts
The PHP built-in server has one glaring omission. Unlike Apache or nginx, it doesn’t
support .htaccess files. This makes it difficult to use front controllers that are common
in many popular PHP frameworks.

A front controller is a single PHP file to which all HTTP requests
are forwarded (via .htaccess files or rewrite rules). The front-
controller PHP file is responsible for routing the request and dis‐
patching the appropriate PHP code. This is a common pattern used
by Symfony and other popular frameworks.

The PHP built-in server mitigates this omission with router scripts. The router script
is executed before every HTTP request. If the router script returns false, the static
asset referenced by the current HTTP request URI is returned. Otherwise, the output
of the router script is returned as the HTTP response body. In other words, if you use
a router script you’re effectively hardcoding the same functionality as an .htaccess file.

Using a router script is easy. Just pass the PHP script file path as a an argument when
you start up the PHP built-in server:

php -S localhost:8000 router.php

Detect the Built-in Server
Sometimes it’s helpful to know if your PHP script is served by PHP’s built-in web
server versus a traditional web server like Apache or nginx. Perhaps you need to set
specific headers for nginx (e.g., Status:) that should not be set for the PHP web
server. You can detect the PHP web server with the php_sapi_name() function. This
function returns the string cli-server if the current script is served with the PHP
built-in server:

<?php
if (php_sapi_name() === 'cli-server') {
 // PHP web server
} else {
 // Other web server
}

Drawbacks
PHP’s built-in web server should not be used for production. It is for local develop‐
ment only. If you use the PHP built-in web server on a production machine, be pre‐
pared for a lot of disappointed users and a flood of Pingdom downtime notifications.

Built-in HTTP server | 33

https://www.pingdom.com

• The built-in server performs suboptimally because it handles one request at a
time, and each HTTP request is blocking. Your web application will stall if a PHP
file must wait on a slow database query or remote API response.

• The built-in server supports only a limited number of mimetypes.
• The built-in server has limited URL rewriting with router scripts. You’ll need

Apache or nginx for more advanced URL rewrite behavior.

What’s Next
The modern PHP language has a lot of powerful features that can improve your
applications. I’ve talked about my favorite features in this chapter. You can learn more
about PHP’s latest features on the PHP website.

I’m sure you’re excited to start using these fun features in your applications. However,
it’s important that you use these features correctly according to PHP community
standards. And that’s exactly what we talk about in the next chapter.

34 | Chapter 2: Features

http://bit.ly/built-in-ws
http://php.net/manual/features.php

PART II

Good Practices

CHAPTER 3

Standards

There is a mind-boggling number of PHP components and frameworks. There are
macro frameworks like Symfony and Laravel. There are micro frameworks like Silex
and Slim. And there are legacy frameworks like CodeIgniter that were built long
before modern PHP components existed. The modern PHP ecosystem is a veritable
melting pot of code that helps us developers build amazing applications.

Unfortunately, older PHP frameworks were developed in isolation and do not share
code with other PHP frameworks. If your project uses one of these older PHP frame‐
works, you’re stuck with the framework and must live inside the framework’s ecosys‐
tem. This centralized environment is OK if you are happy with the framework’s tools.
However, what if you use the CodeIgniter framework but want to cherry-pick a
helper library from the Symfony framework? You’re probably out of luck unless you
write a one-off adapter specifically for your project.

What we’ve got here is a failure to communicate.
—Cool Hand Luke

Do you see the problem? Frameworks created in isolation were not designed to com‐
municate with other frameworks. This is extremely inefficient, both for developers
(creativity is limited by framework choice) and for frameworks themselves (they re-
invent code that already exists elsewhere). I have good news, though. The PHP com‐
munity has evolved from a centralized framework model to a distributed ecosystem
of efficient, interoperable, and specialized components.

PHP-FIG to the Rescue
Several PHP framework developers recognized this problem and began a conversa‐
tion at php|tek (a popular PHP conference) in 2009. They discussed how to improve
intraframework communication and efficiency. Instead of writing a new and tightly

37

http://symfony.com
http://laravel.com
http://silex.sensiolabs.org
http://slimframework.com
http://www.codeigniter.com
http://tek.phparch.com

coupled logging class, for example, what if a PHP framework could share a decoupled
logging class like monolog? Instead of writing its own HTTP request and response
classes, what if a PHP framework could instead cherry-pick the excellent HTTP
request and response classes from the Symfony Framework’s symfony/httpfounda
tion component? For this to work, PHP frameworks must speak a common language
that allows them to communicate and share with other frameworks. They need
standards.

The PHP framework developers who serendipitously met at php|tek eventually cre‐
ated the PHP Framework Interop Group (PHP-FIG). The PHP-FIG is a group of
PHP framework representatives who, according to the PHP-FIG website, “talk about
the commonalities between our projects and find ways we can work together.” The
PHP-FIG creates recommendations that PHP frameworks can voluntarily implement
to improve communication and sharing with other frameworks.

The PHP-FIG is a self-appointed group of framework representatives. Its members
are not elected, and they are not special in any way other than their willingness to
improve the PHP community. Anyone can request membership. And anyone can
submit feedback to PHP-FIG recommendations that are in the proposal process.
Final PHP-FIG recommendations are typically adopted and implemented by many of
the largest and most popular PHP frameworks. I highly encourage you to get
involved with the PHP-FIG, if only to send feedback and help shape the future of
your favorite PHP frameworks.

It is very important to understand the PHP-FIG provides recom‐
mendations. These are not rules. These are not requirements. These
are carefully crafted suggestions that make our lives as PHP devel‐
opers (and PHP framework authors) easier.

Framework Interoperability
The PHP-FIG’s mission is framework interoperability. And framework interoperabil‐
ity means working together via interfaces, autoloading, and style.

Interfaces
PHP frameworks work together via shared interfaces. PHP interfaces allow frame‐
works to assume what methods are provided by third-party dependencies without
worrying about how the dependencies implement the interface.

38 | Chapter 3: Standards

https://github.com/Seldaek/monolog
http://bit.ly/symf-docs
http://bit.ly/symf-docs
http://www.php-fig.org

Refer to Chapter 2 for an in-depth explanation of PHP interfaces.

For example, a framework is happy to share a third-party logger object assuming the
shared logger object implements the emergency(), alert(), critical(), error(),
warning(), notice(), info(), and debug() methods. Exactly how these methods are
implemented is irrelevant. Each framework cares only that the third-party depend‐
ency does implement these methods.

Interfaces enable PHP developers to build, share, and use specialized components
instead of monolithic frameworks.

Autoloading
PHP frameworks work together via autoloading. Autoloading is the process by which
a PHP class is automatically located and loaded on-demand by the PHP interpreter
during runtime.

Before PHP standards, PHP components and frameworks implemented their own
unique autoloaders using the magic __autoload() method or the more recent
spl_autoload_register() method. This required us to learn and use a unique auto‐
loader for each component and framework. Nowadays, most modern PHP compo‐
nents and frameworks are compatible with a common autoloader standard. This
means we can mix and match multiple PHP components with only one autoloader.

Style
PHP frameworks work together via code style. Your code style determines spacing,
capitalization, and bracket placement (among other things). If PHP frameworks agree
on a standard code style, PHP developers don’t need to learn a new style every time
they use a new PHP framework. Instead, PHP framework code is immediately famil‐
iar. A standard code style also lowers the barrier for new project contributors, who
can spend more time squashing bugs and less time learning an unfamiliar style.

Standard code style also improves our own projects. Every developer has a unique
style with more than a few idiosyncrasies, and these become a problem when multiple
developers work on the same codebase. A standard code style helps all team members
immediately understand the same codebase regardless of its author.

Framework Interoperability | 39

What Is a PSR?
PSR is an acronym for PHP standards recommendation. If you’ve recently read a PHP-
related blog, you have probably seen the terms PSR-1, PSR-2, PSR-3, and so on. These
are PHP-FIG recommendations. Their names begin with PSR- and end with a
number. Each PHP-FIG recommendation solves a specific problem that is frequently
encountered by most PHP frameworks. Instead of PHP frameworks continually re-
solving the same problems, frameworks can instead adopt the PHP-FIG’s recommen‐
dations and build upon shared solutions.

The PHP-FIG has published five recommendations as of this book’s publication:

• PSR-1: Basic code style
• PSR-2: Strict code style
• PSR-3: Logger interface
• PSR-4: Autoloading

If you counted only four recommendations, you are correct. The
PHP-FIG deprecated its first PSR-0 recommendation. This first
recommendation was replaced by the newer PSR-4
recommendation.

Notice how the PHP-FIG recommendations coincide nicely with the three interoper‐
ability methods I mentioned earlier: interfaces, autoloading, and code style. This is
not a coincidence.

I’m really excited about the PHP-FIG recommendations. They are the bedrock
beneath the modern PHP ecosystem. They define the means with which PHP compo‐
nents and frameworks interoperate. I admit, PHP standards are not the most scintil‐
lating of topics, but they are (in my mind) prerequisite to understanding modern
PHP.

PSR-1: Basic Code Style
If you want to write PHP code that is compatible with community standards, start
with PSR-1. It’s the easiest PHP standard to use. It’s so easy, you’re probably already
using it without even trying. PSR-1 provides simple guidelines that are easy to imple‐
ment with minimal effort. The point of PSR-1 is to provide a baseline code style for
participating PHP frameworks. You must satisfy these requirements to be compatible
with PSR-1:

40 | Chapter 3: Standards

http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-0/
http://www.php-fig.org/psr/psr-4/

PHP tags
You must surround your PHP code with either the <?php ?> or <?= ?> tags. You
must not use any other PHP tag syntax.

Encoding
All PHP files must be encoded with the UTF-8 character set without a byte order
mark (BOM). This sounds complicated, but your text editor or IDE can do this
for you automatically.

Objective
A single PHP file can either define symbols (a class, trait, function, constant, etc.)
or perform an action that has side effects (e.g., create output or manipulate data).
A PHP file should not do both. This is a simple task and requires only a little
foresight and planning on your part.

Autoloading
Your PHP namespaces and classes must support the PSR-4 autoloader standard.
All you have to do is choose appropriate names for your PHP symbols and make
sure their definition files are in the expected location. We’ll chat about PSR-4
soon.

Class names
Your PHP class names must use the common CamelCase format. This format is
also called TitleCase. Examples are CoffeeGrinder, CoffeeBean, and PourOver.

Constant names
Your PHP constants must use all uppercase characters. They may use under‐
scores to separate words if necessary. Examples are WOOT, LET_OUR_POWERS_COM
BINE, and GREAT_SCOTT.

Method names
Your PHP method names must use the common camelCase format. This means
the method name’s first character is lowercase, and the first letter of each subse‐
quent word in the method name is uppercase. Examples are phpIsAwesome, iLo
veBacon, and tennantIsMyFavoriteDoctor.

PSR-2: Strict Code Style
After you implement PSR-1, the next step is to implement PSR-2. The PSR-2 standard
further defines PHP code style with stricter guidelines.

The PSR-2 code style is a godsend for PHP frameworks that have many contributors
from around the world, all of whom bring their own unique style and preferences. A
common strict code style lets developers write code that is easily and quickly under‐
stood by other contributors.

PSR-2: Strict Code Style | 41

Unlike PSR-1, the PSR-2 recommendation contains stricter guidelines. Some of
PSR-2’s guidelines may not be what you prefer. However, PSR-2 is the preferred code
style of many popular PHP frameworks. You don’t have to use PSR-2, but doing so
will drastically improve the ability for other developers to read, use, and contribute to
your PHP code.

You should use the stricter PSR-2 code style. Even though I call it
strict, it’s easy enough to write. Eventually it’ll become second
nature. Also, there are tools available to automatically format exist‐
ing PHP code into the PSR-2 style.

Implement PSR-1
The PSR-2 code style requires that you implement the PSR-1 code style.

Indentation
This is a hot topic that is typically divided into two camps. The first camp prefers
to indent code with a single tab character. The second (and much cooler) camp
prefers to indent code with several space characters. The PSR-2 recommendation
says PHP code should be indented with four space characters.

From personal experience, space characters are better suited for
indentation because a space is a definitive measure that largely ren‐
ders the same in different code editors. A tab, however, can vary in
width and renders differently in different code editors. Use four
space characters to indent code to ensure the best visual continuity
for your code.

Files and lines
Your PHP files must use Unix linefeed (LF) endings, must end with a single blank
line, and must not include a trailing ?> PHP tag. Each line of code should not
exceed 80 characters. Ultimately, each line of code must not exceed 120 charac‐
ters. Each line must not have trailing white space. This sounds like a lot of work,
but it’s really not. Most code editors can automatically wrap code to a specific
width, strip trailing whitespace, and use Unix line endings. All of these should
happen automatically with little to no thought on your part.

Omitting the trailing ?> PHP tag was odd to me at first. However, it
is good practice to omit the closing tag to avoid unexpected output
errors. If you do include the ?> closing tag, and also a blank line
after the closing tag, the blank line is considered output and can
cause errors (e.g., when you set HTTP headers).

42 | Chapter 3: Standards

Keywords
I know many PHP developers who type TRUE, FALSE, and NULL in uppercase char‐
acters. If you do this, try to unlearn this practice and instead use only lowercase
characters from now on. The PSR-2 recommendation says that you should type
all PHP keywords in lowercase.

Namespaces
Each namespace declaration must be followed by one blank line. Likewise, when
you import or alias namespaces with the use keyword, you must follow the block
of use declarations with one blank line. Here’s an example:

<?php
namespace My\Component;

use Symfony\Components\HttpFoundation\Request;
use Symfony\Components\HttpFoundation\Response;

class App
{
 // Class definition body
}

Classes
Like indentation, class definition bracket placement is another topic that attracts
heated debate. Some prefer the opening bracket to reside on the same line as the
class name. Others prefer the opening bracket to reside on a new line after the
class name. The PSR-2 recommendation says a class definition’s opening bracket
must reside on a new line immediately after the class definition name as shown
in the following example. The class definition’s closing bracket must reside on a
new line after the end of the class definition body. This is probably what you have
been doing already so it’s not as big a deal. If your class extends another class or
implements an interface, the extends and implements keywords must appear on
the same line as the class name:

<?php
namespace My\App;

class Administrator extends User
{
 // Class definition body
}

Methods
Method definition bracket placement is the same as class definition bracket
placement. The method definition’s opening bracket resides on a new line imme‐
diately after the method name. The method definition’s closing bracket resides on
a new line immediately after the method definition body. Pay close attention to
the method arguments. The first parenthesis does not have a trailing space, and

PSR-2: Strict Code Style | 43

the last parenthesis does not have a preceding space. Each method argument
(except the last) is followed immediately by a comma and one space character:

<?php
namespace Animals;

class StrawNeckedIbis
{
 public function flapWings($numberOfTimes = 3, $speed = 'fast')
 {
 // Method definition body
 }
}

Visibility
You must declare a visibility for each class property and method. A visibility is
one of public, protected, or private; visibility determines how a property or
method is accessible within and outside of its class. Old-school PHP developers
may be accustomed to prefixing class properties with the var keyword and pre‐
fixing private methods with the underscore _ character. Do not do this. Use one of
the visibilities listed previously instead. If you declare a class property or method
as abstract or final, the abstract and final qualifiers must appear before the
visibility. If you declare a property or method as static, the static qualifier
must appear after the visibility:

<?php
namespace Animals;

class StrawNeckedIbis
{
 // Static property with visibility
 public static $numberOfBirds = 0;

 // Method with visibility
 public function __construct()
 {
 static::$numberOfBirds++;
 }
}

Control structures
This is probably the one guideline that trips me up the most. All control structure
keywords must be followed by a single space character. A control structure key‐
word is if, elseif, else, switch, case, while, do while, for, foreach, try, or
catch. If the control structure keyword requires a set of parentheses, make sure
the first parenthesis is not followed by a space character, and make sure the last
parenthesis is not preceded by a space character. Unlike in class and method defi‐
nitions, opening brackets that appear after a control structure keyword must
remain on the same line as the control structure keyword. The control structure

44 | Chapter 3: Standards

keyword’s closing bracket must reside on a new line. Here’s a brief example that
demonstrates these guidelines:

<?php
$gorilla = new \Animals\Gorilla;
$ibis = new \Animals\StrawNeckedIbis;

if ($gorilla->isAwake() === true) {
 do {
 $gorilla->beatChest();
 } while ($ibis->isAsleep() === true);

 $ibis->flyAway();
}

You can automate PSR-1 and PSR-2 code style compatibility. Many
code editors automatically format your code according to PSR-1
and PSR-2. There are tools available to help you audit and format
your code against PHP standards, too. One such tool is the PHP
Code Sniffer, also called phpcs. This tool (used directly on the
command line or via your IDE) reports inconsistencies between
your code and a given PHP code standard. You can install phpcs
with most package managers (e.g., PEAR, Homebrew, Aptitude, or
Yum).
You can also use Fabien Potencier’s PHP-CS-Fixer to correct most
incompatibilities automatically. This tool is not perfect, but it’ll get
you most of the way toward PSR compatibility with little or no
effort on your part.

PSR-3: Logger Interface
The third PHP-FIG recommendation is not a set of guidelines like its predecessors.
PSR-3 is an interface, and it prescribes methods that can be implemented by PHP log‐
ger components.

A logger is an object that writes messages of varying importance to
a given output. Logged messages are used to diagnose, inspect, and
troubleshoot application operation, stability, and performance.
Examples include writing debug information to a text file during
development, capturing website traffic statistics into a database, or
emailing fatal error diagnostics to a website administrator. The
most popular PHP logger component is monolog/monolog, created
by Jordi Boggiano.

Many PHP frameworks implement logging in some capacity. Before the PHP-FIG,
each framework solved logging differently, often with a proprietary implementation.

PSR-3: Logger Interface | 45

http://bit.ly/phpsniffer
http://bit.ly/phpsniffer
http://cs.sensiolabs.org/
https://packagist.org/packages/monolog/monolog

In the spirit of interoperability and specialization—recurring motifs in modern PHP
—the PHP-FIG established the PSR-3 logger interface. Frameworks that accept PSR-3
compatible loggers accomplish two important things: logging concerns are delegated
to a third party, and end users can provide their preferred logger component. It’s a
win-win for everyone.

Write a PSR-3 Logger
A PHP logger component compatible with the PSR-3 recommendation must include
a PHP class that implements the interface named Psr\Log\LoggerInterface. The
PSR-3 interface replicates the RFC 5424 syslog protocol and prescribes nine methods:

<?php
namespace Psr\Log;

interface LoggerInterface
{
 public function emergency($message, array $context = array());
 public function alert($message, array $context = array());
 public function critical($message, array $context = array());
 public function error($message, array $context = array());
 public function warning($message, array $context = array());
 public function notice($message, array $context = array());
 public function info($message, array $context = array());
 public function debug($message, array $context = array());
 public function log($level, $message, array $context = array());
}

Each interface method maps to a corresponding RFC 5424 protocol level and accepts
two arguments. The first $message argument must be a string or an object with a
__toString() method. The second $context argument is optional and provides an
array of placeholder values that replace tokens in the first argument.

Use the $context argument to construct complicated logger mes‐
sages. You use placeholders in the message text. A placeholder looks
like {placeholder_name}; it contains a {, the placeholder name,
and a }. A placeholder does not contain spaces. The $context
argument is an associative array; its keys are placeholder names
(without brackets), and its values replace the related placeholders
in the message text.

To write a PSR-3 logger, create a new PHP class that implements the Psr\Log\Logger
Interface interface and provide a concrete implementation for each interface
method.

46 | Chapter 3: Standards

http://tools.ietf.org/html/rfc5424

Use a PSR-3 Logger
If you are creating your own PSR-3 logger, stop and reconsider if you are spending
your time wisely. I strongly discourage you from writing your own logger. Why?
Because there are some truly amazing PHP logger components already available!

If you need a PSR-3 logger, just use monolog/monolog. Don’t waste time looking else‐
where. The Monolog PHP component fully implements the PSR-3 interface, and it’s
easily extended with custom message formatters and handlers. Monolog’s message
handlers let you send log messages to text files, syslog, email, HipChat, Slack, net‐
worked servers, remote APIs, databases, and pretty much anywhere else you can
imagine. In the very unlikely event Monolog does not provide a handler for your
desired output destination, it’s super-easy to write and integrate your own Monolog
message handler. Example 3-1 demonstrates how easy it is to setup Monolog and log
messages to a text file.

Example 3-1. Using Monolog

<?php
use Monolog\Logger;
use Monolog\Handler\StreamHandler;

// Prepare logger
$log = new Logger('myApp');
$log->pushHandler(new StreamHandler('logs/development.log', Logger::DEBUG));
$log->pushHandler(new StreamHandler('logs/production.log', Logger::WARNING));

// Use logger
$log->debug('This is a debug message');
$log->warning('This is a warning message');

PSR-4: Autoloaders
The fourth PHP-FIG recommendation describes a standardized autoloader strategy.
An autoloader is a strategy for finding a PHP class, interface, or trait and loading it
into the PHP interpreter on-demand at runtime. PHP components and frameworks
that support the PSR-4 autoloader standard can be located by and loaded into the
PHP interpreter with only one autoloader. This is a big deal given the modern PHP
ecosystem’s affinity for many interoperable components.

Why Autoloaders Are Important
How often have you seen code like this at the top of your PHP files?

<?php
include 'path/to/file1.php';

PSR-4: Autoloaders | 47

https://packagist.org/packages/monolog/monolog

include 'path/to/file2.php';
include 'path/to/file3.php';

All too often, right? You’re probably familiar with the require(), require_once(),
include(), and include_once() functions. These functions load an external PHP file
into the current script, and they work wonderfully if you have only a few PHP scripts.
However, what if you need to include a hundred PHP scripts? What if you need to
include a thousand PHP scripts? The require() and include() functions do not
scale well, and this is why PHP autoloaders are important. An autoloader is a strategy
for finding a PHP class, interface, or trait and loading it into the PHP interpreter on-
demand at runtime, without explicitly including files as the example does.

Before the PHP-FIG introduced its PSR-4 recommendation, PHP component and
framework authors used the __autoload() and spl_autoload_register() functions
to register custom autoloader strategies. Unfortunately, each PHP component and
framework used a unique autoloader, and every autoloader used different logic to
locate and load PHP classes, interfaces, and traits. Developers using these compo‐
nents and frameworks were obliged to invoke each component’s autoloader when
bootstrapping a PHP application. I use Sensio Labs’ Twig template component all the
time. It’s awesome. Without PSR-4, however, I have to read Twig’s documentation and
figure out how to register its custom autoloader in my application’s bootstrap file, like
this:

<?php
require_once '/path/to/lib/Twig/Autoloader.php';
Twig_Autoloader::register();

Imagine having to research and register unique autoloaders for every PHP compo‐
nent in your application. The PHP-FIG recognized this problem and proposed the
PSR-4 autoloader recommendation to facilitate component interoperability. Thanks
to PSR-4, we can autoload all of our application’s PHP components with only one
autoloader. This is amazing. Most modern PHP components and frameworks are
compatible with PSR-4. If you write and distribute your own components, make sure
they are compatible with PSR-4, too! Participating components include Symfony,
Doctrine, Monolog, Twig, Guzzle, SwiftMailer, PHPUnit, Carbon, and many others.

The PSR-4 Autoloader Strategy
Like any PHP autoloader, PSR-4 describes a strategy to locate and load PHP classes,
interfaces, and traits during runtime. The PSR-4 recommendation does not require
you to change your code’s implementation. Instead, PSR-4 only suggests how your
code is organized into filesystem directories and PHP namespaces. The PSR-4 auto‐
loader strategy relies on PHP namespaces and filesystem directories to locate and
load PHP classes, interfaces, and traits.

48 | Chapter 3: Standards

http://twig.sensiolabs.org

The essence of PSR-4 is mapping a top-level namespace prefix to a specific filesystem
directory. For example, I can tell PHP that classes, interfaces, or traits beneath the
\Oreilly\ModernPHP namespace live beneath the src/ physical filesystem directory.
PHP now knows that any classes, interfaces, or traits that use the \Oreilly\Mod
ernPHP namespace prefix correspond to directories and files beneath the src/ direc‐
tory. For example, the \Oreilly\ModernPHP\Chapter1 namespace corresponds to the
src/Chapter1 directory, and the \Oreilly\ModernPHP\Chapter1\Example class corre‐
sponds to the src/Chapter1/Example.php file.

PSR-4 lets you map a namespace prefix to a filesystem directory.
The namespace prefix can be one top-level namespace. The name‐
space prefix can also be a top-level namespace and any number of
subnamespaces. It’s quite flexible.

Remember when we talked about vendor namespaces in Chapter 2? The PSR-4 auto‐
loader strategy is most relevant to component and framework authors who distribute
code to other developers. A PHP component’s code lives beneath a unique vendor
namespace, and the component’s author specifies which filesystem directory corre‐
sponds to the component’s vendor namespace—exactly as I demonstrated earlier.
We’ll explore this concept more in Chapter 4.

How to Write a PSR-4 Autoloader (and Why You Shouldn’t)
We know that PSR-4 compatible code has a namespace prefix that maps to a base file‐
system directory. We also know that subnamespaces beneath the namespace prefix
map to subdirectories beneath the base filesystem directory. Example 3-2 shows an
autoloader implementation, borrowed from the PHP-FIG website, that finds and
loads classes, interfaces, and traits based on the PSR-4 autoloader strategy.

Example 3-2. PSR-4 autoloader

<?php
/**
 * An example of a project-specific implementation.
 *
 * After registering this autoload function with SPL, the following line
 * would cause the function to attempt to load the \Foo\Bar\Baz\Qux class
 * from /path/to/project/src/Baz/Qux.php:
 *
 * new \Foo\Bar\Baz\Qux;
 *
 * @param string $class The fully qualified class name.
 * @return void
 */
spl_autoload_register(function ($class) {

PSR-4: Autoloaders | 49

http://bit.ly/php-fig

 // project-specific namespace prefix
 $prefix = 'Foo\\Bar\\';

 // base directory for the namespace prefix
 $base_dir = __DIR__ . '/src/';

 // does the class use the namespace prefix?
 $len = strlen($prefix);
 if (strncmp($prefix, $class, $len) !== 0) {
 // no, move to the next registered autoloader
 return;
 }

 // get the relative class name
 $relative_class = substr($class, $len);

 // replace the namespace prefix with the base directory, replace namespace
 // separators with directory separators in the relative class name, append
 // with .php
 $file = $base_dir . str_replace('\\', '/', $relative_class) . '.php';

 // if the file exists, require it
 if (file_exists($file)) {
 require $file;
 }
});

Copy and paste this into your application, change the $prefix and $base_dir vari‐
ables, and you have yourself a working PSR-4 autoloader. However, if you find your‐
self writing your own PSR-4 autoloader, stop and ask yourself if what you are doing is
really necessary. Why? Because we can use PSR-4 autoloaders that are automagically
generated by the Composer dependency manager. Conveniently enough, that’s
exactly what we’ll talk about next in Chapter 4.

50 | Chapter 3: Standards

CHAPTER 4

Components

Modern PHP is less about monolithic frameworks and more about composing solu‐
tions from specialized and interoperable components. When I build a new PHP
application, rarely do I reach straight for Laravel or Symfony. Instead, I think about
which existing PHP components I can combine to solve my problem.

Why Use Components?
Modern PHP components are a new concept to many PHP programmers. I had no
idea about PHP components until a few years ago. Before I knew better, I instinctu‐
ally started PHP applications with a massive framework like Symfony or CodeIgniter
without considering other options. I invested in a single framework’s closed ecosys‐
tem and used the tools it provided. If the framework did not provide what I needed, I
was out of luck and I built additional functionality on my own. It was also difficult to
integrate custom or third-party libraries into larger frameworks because they did not
share common interfaces. I am relieved to inform you that times have changed, and
we are no longer beholden to monolithic frameworks and their walled gardens.

Today, we choose from a vast and continually growing collection of specialized com‐
ponents to create custom applications. Why waste time coding an HTTP request and
response library when the guzzle/http component already exists? Why create a new
router when the aura/router and orno/route components work great? Why spend
time coding an adapter to Amazon’s S3 online storage service when the aws/aws-sdk-
php and league/flysystem components can be used instead? You get my drift. Other
developers have spent countless development hours creating, perfecting, and testing
specialized components that do one thing really well. It’s silly not to take advantage of
these components to build better applications more quickly instead of wasting time
reinventing the wheel.

51

https://packagist.org/packages/guzzle/http
https://packagist.org/packages/aura/router
https://packagist.org/packages/orno/route
https://packagist.org/packages/aws/aws-sdk-php
https://packagist.org/packages/aws/aws-sdk-php
https://packagist.org/packages/league/flysystem

What Are Components?
A component is a bundle of code that helps solve a specific problem in your PHP
application. For example, if your PHP application sends and receives HTTP requests,
there’s a component to do that. If your PHP application parses comma-delimited
data, there’s a PHP component to do that. If your PHP application needs a way to log
messages, there’s a component for that. Instead of rebuilding already-solved function‐
ality, we use PHP components and spend more time solving our project’s larger
objectives.

Technically speaking, a PHP component is a collection of related
classes, interfaces, and traits that solve a single problem. A compo‐
nent’s classes, interfaces, and traits usually live beneath a common
namespace.

In any marketplace, there are good products and there are bad products. The same
concept applies to PHP components. Just as you inspect an apple at the grocery store,
you can use a few tricks to spot a good PHP component. Here are a few characteris‐
tics of good PHP components:

Laser-focused
A PHP component is laser-focused and exists only to solve a single problem very
well. It is not a jack-of-all-trades and master of none; it is a master of one. It is
obsessed with solving a single problem, and it encapsulates its genius beneath a
simple user interface.

Small
A PHP component is no larger than it needs to be. It contains the least amount of
PHP code necessary to solve one problem. The amount of code varies. A PHP
component can have one PHP class. It can also have several PHP classes organ‐
ized into subnamespaces. There is no correct number of classes in a PHP compo‐
nent. It uses however many are necessary to solve its one problem.

Cooperative
A PHP component plays well with others. After all, this is the point of PHP com‐
ponents—their existence depends on their cooperation with other components to
build larger solutions. A PHP component does not pollute the global namespace
with its own code. Instead, a PHP component lives beneath its own namespace to
avoid name collisions with other components.

Well-tested
A PHP component is well-tested. This is easy to accomplish thanks to its small
size. If a PHP component is small and laser-focused, it is very likely easily tested.
Its concerns are few, and its dependencies can be easily identified and mocked.

52 | Chapter 4: Components

The best PHP components provide their own tests and have sufficient test
coverage.

Well-documented
A PHP component is well-documented. It should be easy for developers to
install, understand, and use. Good documentation makes this possible. The PHP
component should have a README file that says what the component does, how
to install it, and how to use it. The component may also have its own website
with more in-depth information. And good documentation should also extend
into the PHP component’s source code. Its classes, methods, and properties
should have inline docblocks that describe the code, its parameters, its return val‐
ues, and its potential exceptions.

Components Versus Frameworks
The problem with frameworks (particularly older frameworks) is that they are an
expensive investment. When we choose a framework, we invest in that framework’s
tools. Frameworks usually provide a smorgasbord of tools. But sometimes we need a
specific something that the framework does not provide, and it becomes our burden
to find and integrate a custom PHP library. Integrating third-party code into a frame‐
work is difficult because the third-party code and the PHP framework probably don’t
share common interfaces.

When we choose a framework, we invest in that framework’s future. We put our faith
behind the framework’s core development team. We assume the framework’s develop‐
ers will continue investing their own time into developing the framework and ensur‐
ing that its code remains up-to-date with modern standards. And often this does not
happen. Frameworks are very large, and they require a lot of time and effort to main‐
tain. Project maintainers have their own lives, jobs, and interests. And lives, jobs, and
interests change.

To be fair, larger PHP components are also at risk of abandonment,
especially if a component only has one core developer.

Also, who’s to say that a particular framework will remain the best tool for the job?
Large projects that exist for many years must perform well and be well-tuned now
and into the future. The wrong PHP framework may hinder this ability. Older PHP
frameworks that have fallen out of fashion may become slower and outmoded as they
lose community support. Older frameworks are often written with procedural code
instead of modern object-oriented code. Your newer team members may be unfami‐

Components Versus Frameworks | 53

liar with an older framework’s codebase. There is a lot to consider when deciding
whether or not to use a PHP framework.

Not All Frameworks Are Bad
So far I’ve spoken only about the downsides of frameworks. Frameworks are not all
bad. Symfony is an excellent example of a modern PHP framework. Fabien Potencier
and Sensio Labs built the Symfony Framework as an amalgam of smaller and decou‐
pled Symfony components. These components can be used together as a framework
or piecemeal in custom applications.

Other, older frameworks are making a similar transition to modern PHP compo‐
nents. The Drupal content management framework is another example. Drupal 7 is
written with procedural PHP code that lives in the global PHP namespace. It ignores
modern PHP practices to support its legacy codebase. However, Drupal 8 is a ginor‐
mous and commendable leap into modern PHP. Drupal 8 leverages the comparative
advantages of many different PHP components to build a modern content manage‐
ment platform.

Laravel is also a popular PHP framework written by Taylor Otwell. Like Symfony,
Laravel is built atop its own Illuminate component library. However (at time of pub‐
lishing), Laravel’s components are not easily decoupled for use in non-Laravel appli‐
cations. Laravel does not use the PSR-2 community standards, and Laravel does not
adhere to the Semantic Versioning scheme. Don’t let this dissuade you though. Lara‐
vel is still an amazing framework that can create very powerful applications.

The most popular modern PHP frameworks include:

• Aura

• Laravel

• Symfony

• Yii

• Zend

Use the Right Tool for the Job
Should you use components or a framework? Use the right tool for the job. Most
modern PHP frameworks are only a set of conventions built atop smaller PHP com‐
ponents.

If you are working on a smaller project that can be solved with a precise collection of
PHP components, then use components. Components make it super-easy to shop for
and use existing tools so we can focus less on boilerplate and more on the larger task

54 | Chapter 4: Components

http://symfony.com/
http://sensiolabs.com/
http://symfony.com/components
https://www.drupal.org
http://laravel.com
https://github.com/illuminate
http://semver.org/
http://auraphp.com/framework
http://laravel.com/
http://symfony.com/
http://www.yiiframework.com/
http://framework.zend.com/

at hand. Components also help our code remain lightweight and nimble. We use only
the code we need, and it’s super-easy to swap one component with another that may
be better suited for our project.

If you are working on a large project with multiple team members and can benefit
from the conventions, discipline, and structure provided by a framework, then use a
framework. However, frameworks make many decisions for us and require us to
adhere to its set of conventions. Frameworks are less flexible, but we do get far more
out-of-the-box than we do with a collection of PHP components. If these tradeoffs
are acceptable, by all means use a framework to guide and expedite your project
development.

Find Components
You can find modern PHP components on Packagist (Figure 4-1), the de facto PHP
component directory. This website aggregates PHP components and makes them
searchable by keyword. The best PHP components are listed on Packagist. I tip my
hat to Jordi Boggiano and Igor Wiedler for creating such an invaluable community
resource.

I’m often asked which components I believe are the best PHP com‐
ponents. This is a subjective question. However, I largely agree with
the PHP components listed at Awesome PHP. This is a list of good
PHP components curated by Jamie York.

Find Components | 55

https://packagist.org
http://seld.be/
https://igor.io/archive.html
https://github.com/ziadoz/awesome-php
https://github.com/ziadoz

Figure 4-1. Packagist website

Shop
Do not waste your time solving problems that are already solved. Do you need to
send or receive HTTP messages? Go to Packagist and search for http; Guzzle is the
first result. Use it. Do you need to parse a CSV file? Go to Packagist and search for
csv; pick a CSV component and use it. Think of Packagist as a grocery store for PHP
components where you can shop for the best ingredients. Packagist probably has a
PHP component that solves your problem.

Choose
What if there are multiple PHP components on Packagist that do what you need?
How do you pick the best one? Packagist keeps statistics about each PHP component.
Packagist tells you how many times each PHP component has been downloaded and
starred (Figure 4-2). More downloads and stars indicate a component may be a good
option (this is not always true). That being said, don’t discount newer packages with
fewer downloads. Many new components are added every day.

It can be difficult to find the perfect PHP component if your Packagist keyword
search returns a large number of results. You can’t always rely on download statistics,
because crowds are not always right. This is a problem that Packagist must address as
it becomes more popular. I recommend you rely on word of mouth and peer recom‐
mendations to confirm your PHP component selection.

56 | Chapter 4: Components

Figure 4-2. Packagist website search results

Leave Feedback
If you find a PHP component that you like, star the PHP component on Packagist
and share it with your fellow PHP developers on Twitter, Facebook, IRC, Slack, and
your other communication channels. This helps the best PHP components bubble up
so they are discovered by other developers.

Use PHP Components
Packagist is where you find PHP components. Composer is how you install PHP
components. Composer is a dependency manager for PHP components that runs on
the command line. You tell Composer which PHP components you need, and Com‐
poser downloads and autoloads the components into your project. It’s as simple as
that. Because Composer is a dependency manager, it also resolves and downloads
your components’ dependencies (and their dependencies, ad infinitum).

Composer works hand-in-hand with Packagist, too. When you tell Composer you
want to use the guzzlehttp/guzzle component, Composer fetches the guzzlehttp/
guzzle component listing on Packagist, finds the component’s repository URL, deter‐
mines the appropriate version to use, and discovers the component’s dependencies.
Composer then downloads the guzzlehttp/guzzle component and its dependencies
into your project.

Use PHP Components | 57

https://getcomposer.org/

Composer is important because dependency management and autoloading are hard
problems to solve. Autoloading is the process of automatically loading PHP classes
on-demand without explicitly loading them with the require(), require_once(),
include(), or include_once() functions. Older PHP versions let us write custom
autoloaders with the __autoload() function; this function is automatically invoked
by the PHP interpreter when we instantiate a class that has not already been loaded.
PHP later introduced the more flexible spl_autoload_register() function in its
SPL library. Exactly how a PHP class is autoloaded is entirely up to the developer.
Unfortunately, the lack of a common autoloader standard often necessitates a unique
autoloader implementation for every project. This makes it difficult to use code cre‐
ated and shared by other developers if each developer provides a unique autoloader.

The PHP Framework Interop Group recognized this problem and created the PSR-0
standard (superseded by the PSR-4 standard). The PSR-0 and PSR-4 standards sug‐
gest how to organize code into namespaces and filesystem directories so it is compati‐
ble with one standard autoloader implementation. As I alluded to in Chapter 3, we
don’t have to write a PSR-4 autoloader on our own. Instead, the Composer depend‐
ency manager automatically generates a PSR-compatible autoloader for all of our
project’s PHP components. Composer effectively abstracts away dependency manage‐
ment and autoloading.

I believe Composer is the most important addition to the PHP
community, period. It changed the way I create PHP applications. I
use Composer for every PHP project because it drastically simpli‐
fies integrating and using third-party PHP components in my
applications. If you haven’t used Composer yet, you should start
researching Composer today.

How to Install Composer
Composer is easy to install. Open a terminal and execute this command:

curl -sS https://getcomposer.org/installer | php

This command downloads the Composer installer script with curl, executes the
installer script with php, and creates a composer.phar file in the current working direc‐
tory. The composer.phar file is the Composer binary.

Never execute code that you blindly download from a remote URL.
Be sure you review the remote code first so you know exactly what
it will do. Also make sure you download the remote code over
HTTPS.

58 | Chapter 4: Components

I prefer to move and rename the downloaded Composer binary to /usr/local/bin/
composer with this command:

sudo mv composer.phar /usr/local/bin/composer

Be sure you run this command to make the composer binary executable:

sudo chmod +x /usr/local/bin/composer

Finally, add the /usr/local/bin directory to your environment PATH by appending this
line to your ~/.bash_profile file:

PATH=/usr/local/bin:$PATH

You should now be able to execute composer in your terminal application to see a list
of Composer options (Figure 4-3).

Figure 4-3. Composer command-line options

How to Use Composer
Now that Composer is installed, let’s download some PHP components. Composer is
typically used to download PHP components on a per-project basis.

Use PHP Components | 59

Component names
First, you should make a list of the components you need for your project. Specifi‐
cally, note each component’s vendor and package names. Each PHP component has a
vendor name and a package name. For example, the popular league/flysystem com‐
ponent’s vendor name is league and its package name is flysystem. The vendor and
package names are separated with a / character. Together, the vendor and package
names form the full component name league/flysystem.

The vendor name is globally unique and provides the global identity to which its
encompassed packages belong. The package name uniquely identifies a single pack‐
age beneath a given vendor name. Composer and Packagist use the vendor/package
naming convention to avoid name collisions among PHP components from different
vendors. You can find a PHP component’s vendor and package names on the compo‐
nent’s Packagist directory listing (Figure 4-4).

Figure 4-4. Packagist vendor and package name

Component installation

Each PHP component can have many available versions (e.g., 1.0.0, 1.5.0, or
2.15.0). All available versions are listed on the component’s Packagist directory
listing.

60 | Chapter 4: Components

https://packagist.org/packages/league/flysystem

Semantic Versioning

Modern PHP components use the Semantic Versioning scheme
and contain three numbers separated with a period (.) character
(e.g., 1.13.2). The first number is the major release number; the
major release number is incremented whenever the PHP compo‐
nent is updated with changes that break backward compatibility.
The second number is the minor release number; the minor release
number is incremented whenever the PHP component is updated
with minor features that do not break backward compatibility. The
third and final number is the patch release number; the patch
release number is incremented when the PHP component receives
backward-compatible bug fixes.

Fortunately, we don’t have to figure out each component’s most stable version num‐
ber. Composer does this for us. Navigate to your project’s topmost directory in your
terminal application and run this command once for each PHP component:

composer require vendor/package

Replace vendor/package with the component’s vendor and package names. To install
the Flysystem component, for example, run this command:

composer require league/flysystem

This command instructs Composer to find and install the PHP component’s most
stable version. It also instructs Composer to update the component up to, but not
including, the component’s next major version. The previous example, as of October
2014, installs Flysystem version 0.5.9, and it will update the Flysystem component
up to, but not including, version 1.*.

You can review the result of this command in the newly created or updated com‐
poser.json file in your project’s topmost directory. This command also creates a com‐
poser.lock file. Commit both of these files into your version control system.

Example Project
Let’s reinforce our Composer skills by building an example PHP application that
scans URLs from a CSV file and reports all inaccessible URLs. Our project will send
an HTTP request to each URL. If a URL returns an HTTP response with a status
code greater than or equal to 400, we’ll send the inaccessible URL to standard out.
Our project will be a command-line application, and the path to the CSV file will be
the first and only command-line argument. Ultimately, we’ll execute our script, pass
it the CSV file path, and see a list of inaccessible URLs on standard out:

php scan.php /path/to/urls.csv

Our project directory looks like Figure 4-5.

Use PHP Components | 61

http://semver.org/

Figure 4-5. Component directory structure

The first thing I do when starting a new PHP project is determine what tasks can be
solved with existing PHP components. The scan.php script opens and iterates a CSV
file, so we’ll need a PHP component that can read and iterate CSV data. The scan.php
script also sends an HTTP request to each URL in the CSV file, so we’ll need a PHP
component that can send HTTP requests and inspect HTTP responses. It is certainly
possible to write our own code to iterate a CSV file or send HTTP requests, but why
should we waste our time if these problems are already solved? Remember, our goal is
to scan a list of URLs. Our job is not to build HTTP and CSV parser libraries.

After browsing Packagist, I find the guzzlehttp/guzzle and league/csv PHP com‐
ponents. The former handles HTTP messages and the latter parses and iterates CSV
data. Let’s install these components with Composer using these commands in the
project’s topmost directory:

composer require guzzlehttp/guzzle;
composer require league/csv;

These commands instruct Composer to download these two components into a new
vendor/ directory in the project’s topmost directory. It also creates a composer.json file
and a composer.lock file.

The composer.lock file
After you install project dependencies with Composer, you’ll notice that Composer
creates a composer.lock file. This file lists all of the PHP components used by our
project and the components’ exact version numbers (including major, minor, and
patch numbers). This effectively locks our project to these specific PHP component
versions.

Why is this important? If a composer.lock file is present, Composer downloads the
specific PHP component versions listed in the composer.lock file regardless of the
component’s latest available version on Packagist. You should version control the
composer.lock file and distribute it to your team members so they can use the same

62 | Chapter 4: Components

PHP component versions as you. If your team members, your staging server, and
your production server all use the same PHP component versions, you minimize the
risk of bugs caused by component version discrepancies.

The one downside with the composer.lock file is that composer install will not
install versions newer than those listed in the composer.lock file. If you do need to
download newer component versions and update your composer.lock file, use com
poser update. The composer update command updates your components to their
latest stable versions and also updates the composer.lock file with new PHP compo‐
nent version numbers.

Autoloading PHP components
Now that our project’s PHP components are installed with Composer, how do we use
them? Luckily for us, when Composer downloads the PHP components it also creates
a single PSR-compatible autoloader for all of our project dependencies. All we have to
do is require Composer’s autoloader at the top of the scan.php file:

<?php
require 'vendor/autoload.php';

Composer’s autoloader is just a PHP file named autoload.php located inside the ven‐
dor/ directory. When Composer downloads each PHP component, Composer
inspects each component’s own composer.json file to determine how the component
prefers to be autoloaded and, with this information, creates a local PSR-compatible
autoloader for it. Ultimately, we can instantiate any of our project’s PHP components
and they are autoloaded on-demand! Pretty neat, huh?

Implement scan.php
Let’s finish the scan.php script using the Guzzle and CSV components. Remember, the
path to the CSV file is provided as the first command-line argument (accessible in the
$argv array) when our PHP script is executed. The scan.php script looks like
Example 4-1.

Example 4-1. URL scanner app

<?php
// 1. Use Composer autoloader
require 'vendor/autoload.php';

// 2. Instantiate Guzzle HTTP client
$client = new \GuzzleHttp\Client();

// 3. Open and iterate CSV
$csv = new \League\Csv\Reader($argv[1]);
foreach ($csv as $csvRow) {
 try {

Use PHP Components | 63

 // 4. Send HTTP OPTIONS request
 $httpResponse = $client->options($csvRow[0]);

 // 5. Inspect HTTP response status code
 if ($httpResponse->getStatusCode() >= 400) {
 throw new \Exception();
 }
 } catch (\Exception $e) {
 // 6. Send bad URLs to standard out
 echo $csvRow[0] . PHP_EOL;
 }
}

Pay attention to how we use the \League\Csv and \GuzzleHttp
namespaces when we instantiate the guzzlehttp/guzzle and lea
gue/csv components. How do we know to use these particular
namespaces? I read the guzzlehttp/guzzle and league/csv docu‐
mentation. Remember, good PHP components have
documentation.

Add a few URLs to the urls.csv file, one URL per line. Make sure at least one URL is
invalid. Next, open a terminal and execute the scan.php script:

php scan.php urls.csv

We execute the php binary and pass it two arguments. The first argument is the path
to the scan.php script. The second argument is the path to the CSV file that contains a
list of URLs. If any of the URLs return an unsuccessful HTTP response, they are out‐
put to the terminal screen.

Command-Line Scripts with PHP

Did you know you can write command-line scripts with PHP? This
is a great way to automate maintenance tasks for your web applica‐
tion. Learn more about writing PHP command line scripts here:

• http://php.net/manual/wrappers.php.php

• https://php.net/manual/reserved.variables.argv.php

• https://php.net/manual/reserved.variables.argc.php

Composer and Private Repositories
So far I’ve assumed you are using open source PHP components that are publicly
available. As much as I create and use open source software, I recognize that using
only open source PHP components may not always be possible. Sometimes we have

64 | Chapter 4: Components

http://php.net/manual/wrappers.php.php
https://php.net/manual/reserved.variables.argv.php
https://php.net/manual/reserved.variables.argc.php

to mix open source and proprietary components in the same application. This is
especially true for companies that use internally developed PHP components that
cannot be open sourced due to licensing or security concerns. Composer makes this a
nonissue.

Composer can manage private PHP components whose repositories require authenti‐
cation. When you run composer install or composer update, Composer prompts
you if a component’s repository requires authentication credentials. Composer also
asks if you want to save the repository authentication credentials in a local auth.json
file (created adjacent to the composer.json file). An example auth.json file looks like
this:

{
 "http-basic": {
 "example.org": {
 "username": "your-username",
 "password": "your-password"
 }
 }
}

In most cases, you should not version control the auth.json file. Instead, let project
developers create their own auth.json file with their own authentication credentials.

If you’d rather not wait for Composer to request authentication credentials, you can
manually tell Composer your authentication credentials for a remote machine with
this command:

composer config http-basic.example.org your-username your-password

In this example, http-basic lets Composer know we are adding authentication
details for a given domain. The example.org hostname identifies the remote machine
that contains the private component repository. The final two arguments are the user‐
name and password credentials. By default, this command saves credentials in the
current project’s auth.json file.

You can also save authentication credentials system-wide by using the --global flag.
This flag lets Composer use your credentials for all projects on your local machine:

composer config --global http-basic.example.org your-username your-password

Global credentials are saved in the ~/.composer/auth.json file. If you are using Win‐
dows, global credentials are saved in %APPDATA%/Composer.

Learn more about Composer and private repositories in Authenti‐
cation management in Composer.

Use PHP Components | 65

http://bit.ly/auth-manage
http://bit.ly/auth-manage

Create PHP Components
By this point you should be able to find and use PHP components. Let’s switch gears
and talk about creating PHP components. Specifically, we’ll convert the URL scanner
application into a PHP component and submit it to the Packagist component
directory.

Creating PHP components is a great way to share your work with the greater PHP
community. The PHP community is built on a foundation of sharing and helping
others. If you use open source components in your applications, it’s always nice to
return the favor with a new and innovative open source component.

Be careful that you do not rewrite components that already exist. If
you improve upon an existing component, consider sending your
improvements to the original component as a pull request. Other‐
wise, you risk confusing and fragmenting the PHP component eco‐
system with duplicate components.

Vendor and Package Names
Before I build a PHP component, I choose the component’s vendor and package
name. Remember, each PHP component uses a globally unique vendor and package
name combination to avoid name collisions with other components. I recommend
you use only lowercase letters for your vendor and package names.

A vendor name is the brand or identity to which a component belongs. Many of my
own PHP components use the codeguy vendor name because this is my online iden‐
tity. Choose a vendor name that best represents you or your component’s brand.

Search Packagist before you choose a vendor name to make sure it
is not already claimed by another developer.

A package name identifies a PHP component beneath a given vendor name. Many
components can live beneath a single vendor name. For this example, I’ll use mod
ernphp as the vendor name and scanner as the package name.

Namespaces
As we discussed in Chapter 2, each component lives beneath its own PHP namespace
so that it does not pollute the global namespace or collide with other components that
use the same PHP class names.

66 | Chapter 4: Components

A common misconception is that the component’s PHP namespace must match the
component’s vendor and package names. This is not true. The component’s PHP
namespace is unrelated to the component’s vendor and package names. The vendor
and package names are only used by Packagist and Composer to identify a compo‐
nent. You use the component’s namespace when using the component in your PHP
code.

For this tutorial, we’ll create our component beneath the PHP namespace Oreilly
\ModernPHP. This namespace does not exist yet. I just pulled this out of thin air for
this particular component.

Filesystem Organization
PHP components have largely standardized on this filesystem structure:

src/
This directory contains the component’s source code (e.g., PHP class files).

tests/
This directory contains the component’s tests. We will not use this directory in
this example.

composer.json
This is the Composer configuration file. This file describes the component and
tells Composer’s autoloader to map your component’s PSR-4 namespace to the
src/ directory.

README.md
This Markdown file provides helpful information about this component, includ‐
ing its name, description, author, usage, contributor guidelines, software license,
and credits.

CONTRIBUTING.md
This Markdown file describes how others can contribute to this component.

LICENSE
This plain-text file contains the component’s software license.

CHANGELOG.md
This Markdown file lists changes introduced in each new component version.

If you’re having trouble starting your own PHP component, have a
look at the PHP League’s excellent PHP component boilerplate
repository.

Create PHP Components | 67

https://github.com/thephpleague/skeleton
https://github.com/thephpleague/skeleton

The composer.json File
The composer.json file is required and must contain valid JSON. It includes informa‐
tion used by Composer to find, install, and autoload the PHP component. It also con‐
tains information for the component’s Packagist directory listing.

Example 4-2 shows a composer.json file for our URL scanner component. It includes
all of the composer.json properties that I use most often for my own PHP components.

Example 4-2. The URL Scanner component composer.json file

{
 "name": "modernphp/scanner",
 "description": "Scan URLs from a CSV file and report inaccessible URLs",
 "keywords": ["url", "scanner", "csv"],
 "homepage": "http://example.com",
 "license": "MIT",
 "authors": [
 {
 "name": "Josh Lockhart",
 "homepage": "https://github.com/codeguy",
 "role": "Developer"
 }
],
 "support": {
 "email": "help@example.com"
 },
 "require": {
 "php" : ">=5.4.0",
 "guzzlehttp/guzzle": "~5.0"
 },
 "require-dev": {
 "phpunit/phpunit": "~4.3"
 },
 "suggest": {
 "league/csv": "~6.0"
 },
 "autoload": {
 "psr-4": {
 "Oreilly\\ModernPHP\\": "src/"
 }
 }
}

This is admittedly a lot to digest, so let’s step through each composer.json property in
detail:

name

This is the component’s vendor and package name, separated with a / character.
This value is displayed on Packagist.

68 | Chapter 4: Components

description

This contains a few sentences that succinctly describe the component. This
description is displayed on Packagist.

keywords

This contains an appropriate number of keywords that describe the component.
These keywords help others find this component on Packagist.

homepage

This is the URL of the component’s website.

license

This is the software license with which the PHP component is released. I prefer
to use the MIT Public License. You can read more about software licenses at
http://choosealicense.com. Remember to always release your code with a license.

authors

This is an array of information for each project author. You should include at
least a name and URL for each author.

support

This is how the component’s users find technical support. I prefer to include an
email address and support forum URL. You could also list an IRC channel, for
example.

require

This lists the PHP component’s own component dependencies. You should list
each dependency’s vendor/package name and minimum version number. I also
like to list the minimum PHP version required by this component. All dependen‐
cies listed beneath this property are installed for both development and produc‐
tion project installations.

require-dev

This acts like the require property, but it lists only the dependencies required to
develop this component. For example, I often list phpunit as a dev dependency
so that other component contributors can write and run tests. These dependen‐
cies are installed only during development. They are not installed in production
projects.

suggest

This acts like the require property, but it merely suggests other components
because they may be useful when used with our component. Unlike the require
property, this object’s values are free text fields that describe each suggested com‐
ponent. Composer does not install suggested components.

Create PHP Components | 69

http://choosealicense.com

autoload

This tells the Composer autoloader how to autoload this component. I recom‐
mend you use the PSR-4 autoloader, as demonstrated in Example 4-2. Beneath
the psr-4 property, you map the component’s namespace prefix to a filesystem
path relative to the component’s root directory. This makes our component com‐
patible with a standard PSR-4 autoloader. In Example 4-2, I map the Oreilly
\ModernPHP namespace to the src/ directory. The mapping’s namespace must end
with two back slash characters (\\) to avoid conflicts with other components that
use a namespace with a similar sequence of characters. Based on the example
mapping, if we instantiate a hypothetical Oreilly\ModernPHP\Url\Scanner class,
Composer will autoload the PHP class file at src/Url/Scanner.php.

Learn more about the complete composer.json schema at getcom‐
poser.org.

The README file
The README file is often the component’s first introduction to its users. This is espe‐
cially true for components hosted on GitHub and Bitbucket. Therefore, it’s important
that the component’s README file provides, at a minimum, this information:

• Component name and description
• Install instructions
• Usage instructions
• Testing instructions
• Contributing instructions
• Support resources
• Author credits
• Software license

GitHub and Bitbucket can render README files in Markdown for‐
mat. This means you can write well-formatted README files with
headers, lists, links, and images. Use this to your advantage! All you
have to do is add the .md or .markdown file extension to the
README file. The same principle applies to the CONTRIBUTING
and CHANGELOG files. Learn more about the Markdown format
at Daring Fireball.

70 | Chapter 4: Components

https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
http://bit.ly/markdown-doc

Component Implementation
And now we arrive at the component’s meat and potatoes—its implementation. This
is where you write the PHP classes, interfaces, and traits that form the PHP compo‐
nent. What classes you write, and how many, depends entirely on the PHP compo‐
nent’s purpose. However, all component classes, interfaces, and traits must live in the
src/ directory and exist beneath the component’s namespace prefix listed in the com‐
poser.json file.

For this demonstration, I’ll create a single PHP class named Scanner that exists
beneath the Url subnamespace beneath the Oreilly\ModernPHP namespace listed in
the composer.json file. The Scanner class file lives at src/Url/Scanner.php. The Scanner
class implements the same logic as our earlier URL scanner example application,
except it encapsulates the URL scanning behavior in a PHP class (Example 4-3).

Example 4-3. The URL Scanner component class

<?php
namespace Oreilly\ModernPHP\Url;

class Scanner
{
 /**
 * @var array An array of URLs
 */
 protected $urls;

 /**
 * @var \GuzzleHttp\Client
 */
 protected $httpClient;

 /**
 * Constructor
 * @param array $urls An array of URLs to scan
 */
 public function __construct(array $urls)
 {
 $this->urls = $urls;
 $this->httpClient = new \GuzzleHttp\Client();
 }

 /**
 * Get invalid URLs
 * @return array
 */
 public function getInvalidUrls()
 {
 $invalidUrls = [];

Create PHP Components | 71

 foreach ($this->urls as $url) {
 try {
 $statusCode = $this->getStatusCodeForUrl($url);
 } catch (\Exception $e) {
 $statusCode = 500;
 }

 if ($statusCode >= 400) {
 array_push($invalidUrls, [
 'url' => $url,
 'status' => $statusCode
]);
 }
 }

 return $invalidUrls;
 }

 /**
 * Get HTTP status code for URL
 * @param string $url The remote URL
 * @return int The HTTP status code
 */
 protected function getStatusCodeForUrl($url)
 {
 $httpResponse = $this->httpClient->options($url);

 return $httpResponse->getStatusCode();
 }
}

Instead of parsing and iterating a CSV file, we inject an array of URLs into the Scan
ner class constructor. We want our URL scanner class to be as generic as possible. If
we demand a CSV file, we inherently limit our component’s usefulness. If we accept
an array of URLs, we let the end user decide how to fetch an array of URLs (from a
PHP array, a CSV file, an iterator, etc). That being said, we still recommend the lea
gue/csv component because it can be helpful for developers using our component.
We include the league/csv component in the composer.json manifest’s suggest prop‐
erty.

The Scanner class has a hard dependency on the guzzlehttp/guzzle component.
However, we isolate each URL’s HTTP request in the getStatusCodeForUrl()
method. This lets us stub (or override) this method’s implementation in our compo‐
nent’s unit tests so that our tests do not rely on a working Internet connection.

Version Control
We’re almost done. Before we submit our component to Packagist, we must publish it
to a public code repository. I prefer to publish my open source PHP components to

72 | Chapter 4: Components

GitHub. However, any public Git repository is fine (I have published this component
to GitHub).

It’s also a good idea to tag each component release using the Semantic Versioning
scheme. This lets component consumers request specific versions of your component
(e.g., ~1.2). I’ll create a 1.0.0 tag for the URL scanner component.

Packagist Submission
Now we’re ready to submit the component to Packagist. If you don’t use GitHub, go
ahead and create a Packagist account. You can also log in to Packagist with your Git‐
Hub credentials.

Once logged in, click the big green Submit Package button at the top right of the web‐
site. Enter the full Git repository URL into the Repository URL text field and click the
Check button. Packagist verifies the repository URL and prompts you to confirm
your submission. Click Submit to finalize your component submission. Packagist cre‐
ates and redirects you to the component listing, which looks Figure 4-6.

Figure 4-6. Packagist component listing

You’ll notice it pulls the component name, description, keywords, dependencies, and
suggestions from the component’s composer.json file. You’ll also notice that it shows
the repository branches and tags, too. Packagist establishes a direct correlation
between repository tags and semantic version numbers. This is why I recommend

Create PHP Components | 73

https://github.com/modern-php/scanner
https://github.com/modern-php/scanner
https://packagist.org/register/

your repository tags be valid version numbers like 1.0.0, 1.1.0, and so on. However,
we still have that big red alert message that reads:

This package is not auto-updated. Please set up the GitHub Service Hook for
Packagist so that it gets updated whenever you push!

We can activate a GitHub or Bitbucket hook that notifies Packagist whenever the
component repository is updated. Learn how to setup this repository hook at https://
packagist.org/profile/.

Using the Component
We’re done! Now anyone can install the URL scanner component with Composer and
use it in their PHP applications. Run this command in your terminal to install the
URL scanner component with Composer:

composer require modernphp/scanner

Then you can use the URL scanner component, as shown in Example 4-4.

Example 4-4. URL Scanner component usage

<?php
require 'vendor/autoload.php';

$urls = [
 'http://www.apple.com',
 'http://php.net',
 'http://sdfssdwerw.org'
];
$scanner = new \Oreilly\ModernPHP\Url\Scanner($urls);
print_r($scanner->getInvalidUrls());

74 | Chapter 4: Components

https://packagist.org/profile/
https://packagist.org/profile/

CHAPTER 5

Good Practices

This chapter contains an assortment of good practices that you should apply when
building PHP applications. Following good practices makes your applications faster,
more secure, and more stable. The PHP language is an accumulation of tools intro‐
duced piecemeal over a long period of time, and we use these tools to apply good
practices. Tools change with the passage of time as newer and better solutions are
introduced in newer PHP versions. Unfortunately, the PHP language still contains
outdated tools from its past, and it’s possible to build slow and insecure applications
with these outmoded tools if you’re not careful. The trick is knowing which tools to
use and which to ignore. That’s what this chapter is all about.

I’m not preaching “best practices” from atop an academic ivory tower. This chapter
contains good and practical advice that I use every day in all of my own projects. You
can immediately apply this knowledge to your own projects.

Good practices demonstrated in this chapter have always been pos‐
sible with past and present PHP versions. However, how you imple‐
ment these practices changes as the PHP language evolves. Newer
PHP versions introduce tools that make it easier to apply good
practices. This chapter demonstrates how to apply good practices
with the latest tools in PHP 5.3+.

Sanitize, Validate, and Escape
Fox Mulder is correct—trust no one. Never trust any data that originates from a
source not under your direct control. A few external sources are:

• $_GET

• $_POST

75

• $_REQUEST

• $_COOKIE

• $argv

• php://stdin

• php://input

• file_get_contents()

• Remote databases
• Remote APIs
• Data from your clients

All of these external data sources are potential attack vectors that can inject malicious
data into your PHP scripts (intentionally or accidentally). Writing a PHP script that
receives user input and renders output is easy. Doing so safely requires a bit more
thought. The simplest advice I can give you is this: sanitize input, validate data, and
escape output.

Sanitize Input
When you sanitize input (i.e., data from any of the sources listed previously), you
escape or remove unsafe characters. It’s important to sanitize input data before it rea‐
ches your application’s storage layer (e.g., Redis or MySQL). This is your first line of
defense. For example, assume your website comment form accepts HTML. By
default, nothing prevents a visitor from adding a devious <script> tag to the com‐
ment text like this:

<p>
 This was a helpful article!
</p>
<script>window.location.href='http://example.com';</script>

If you don’t sanitize this comment, you’ll inject malevolent code into your database
that can be rendered into your website’s markup. When your website visitors go to a
page with this unsanitized comment, they’re redirected to a website that does bad
things. This is one example why you must sanitize input data that you do not control.
In my experience, there are several types of input data that you’ll run into most often:
HTML, SQL queries, and user profile information (i.e., email addresses and phone
numbers).

HTML

You sanitize HTML special characters (e.g., &, >, ″) into their HTML entity
equivalents with the htmlentities() function (Example 5-1). This function escapes

76 | Chapter 5: Good Practices

http://php.net/manual/function.htmlentities.php

all HTML characters in a given string and renders the string safe for your applica‐
tion’s storage layer.

The htmlentities() function is dumb, though. It does not validate HTML input. It
does not escape single quotes by default. And it cannot detect the input string’s char‐
acter set. Here’s how to use the htmlentities() function correctly. The first argu‐
ment is the input string. The second argument is the ENT_QUOTES constant, which
prompts the function to encode single quotes. The third argument specifies the input
string’s character set.

Example 5-1. Sanitize input with the htmlentities() function

<?php
$input = '<p><script>alert("You won the Nigerian lottery!");</script></p>';
echo htmlentities($input, ENT_QUOTES, 'UTF-8');

If you require more finesse when sanitizing HTML input, use the HTML Purifier
library. HTML Purifier is a very robust and secure PHP library that sanitizes HTML
input according to rules that you provide. The HTML Purifier library’s downside is
that it is slow and potentially difficult to configure.

Do not sanitize HTML with regular-expression functions such as
preg_replace(), preg_replace_all() and preg_replace_call
back(). Regular expressions are complicated, the HTML input can
be invalid, and the risk of error is high.

SQL queries
There are times when you must build a SQL query based on input data. Sometimes
this input data arrives in an HTTP request query string (e.g., ?user=1). Other times
this input data arrives as an HTTP request URI segment (e.g., /users/1). If you’re
not careful, bad people can purposefully malform your SQL queries and wreak havoc
on your database. For example, I see many beginner PHP programmers build SQL
queries by concatenating raw $_GET and $_POST input data, as in Example 5-2.

Example 5-2. Bad SQL query

$sql = sprintf(
 'UPDATE users SET password = "%s" WHERE id = %s',
 $_POST['password'],
 $_GET['id']
);

This is bad! What if someone sends this HTTP request to your PHP script?

Sanitize, Validate, and Escape | 77

http://htmlpurifier.org/

POST /user?id=1 HTTP/1.1
Content-Length: 17
Content-Type: application/x-www-form-urlencoded

password=abc";--

This HTTP request sets every user’s password to abc because many SQL databases
consider -- to be the beginning of a comment causing subsequent text to be ignored.
Never use unsanitized input data in a SQL query. If you need to integrate input data in
a SQL query, use a PDO prepared statement. PDO is a database abstraction layer built
into PHP that presents a single interface to multiple databases. PDO prepared state‐
ments are a PDO tool that sanitizes and safely embeds external data into a SQL query
to avoid problems like Example 5-2. I consider PDO and PDO statements extremely
important tools, so I’ve given them their own section later in this chapter.

User profile information
If your application has user accounts, you’ll likely encounter email addresses, tele‐
phone numbers, zip codes, and other profile-related information. PHP anticipates
this scenario with the filter_var() and filter_input() functions. These two func‐
tions accept a variety of flags to sanitize different forms of input: emails, URL-
encoded strings, integers, floats, HTML characters, URLs, and specific ASCII
character ranges.

Example 5-3 demonstrates how to sanitize an email address by removing all charac‐
ters except letters, digits, and !#$%&'*+-/=?^_`{|}~@.[].

Example 5-3. Sanitize user profile email address

<?php
$email = 'john@example.com';
$emailSafe = filter_var($email, FILTER_SANITIZE_EMAIL);

Example 5-4 demonstrates how to sanitize a user’s bio by removing characters below
ASCII 32 and escaping characters above ASCII 127.

Example 5-4. Sanitize user profile international characters

<?php
$string = "\nIñtërnâtiônàlizætiøn\t";
$safeString = filter_var(
 $string,
 FILTER_SANITIZE_STRING,
 FILTER_FLAG_STRIP_LOW|FILTER_FLAG_ENCODE_HIGH
);

78 | Chapter 5: Good Practices

Discover more filter_var() flags and options at http://php.net/
manual/function.filter-var.php.

Validate Data
It is also important to validate data. Unlike sanitization, validation does not remove
information from input data. Validation only confirms that input data meets your
expectations. If you expect an email address, make sure the input data is an email
address. If you expect a phone number, make sure the input data is a phone number.
That’s all there is to it. Validation ensures that you persist accurate and well-formatted
information in your application’s storage layer. If you encounter invalid data, you can
abort the data persistence operation and surface an appropriate error message to your
application’s user. Validation also prevents potential database errors. For example, if
MySQL expects a DATETIME value but is given the string next year, MySQL will
either error out or use a default (and incorrect) value. Either way, your application’s
data integrity is compromised by invalid data.

You can validate user input with the filter_var() function with any of the FIL
TER_VALIDATE_* flags. PHP provides flags to validate Booleans, emails, floats, inte‐
gers, IP addresses, regular expressions, and URLs. Example 5-5 demonstrates how to
validate an email address.

Example 5-5. Validate email address

<?php
$input = 'john@example.com';
$isEmail = filter_var($input, FILTER_VALIDATE_EMAIL);
if ($isEmail !== false) {
 echo "Success";
} else {
 echo "Fail";
}

Pay close attention to the filter_var() function’s return value. If the validation suc‐
ceeds, the return value is the original validated value. If the validation fails, the return
value is false.

Although the filter_var() function provides a number of validation flags, it cannot
validate everything. I recommend these additional validation components, too:

• aura/filter

• respect/validation

Sanitize, Validate, and Escape | 79

http://php.net/manual/function.filter-var.php
http://php.net/manual/function.filter-var.php
https://packagist.org/packages/aura/filter
https://packagist.org/packages/respect/validation

• symfony/validator

You should validate and sanitize input data to make sure input data
is safe and what you expect.

Escape Output
When it’s time to render output to a web page or API response, it is very important
that you escape your output. This is one more layer of protection that prevents mali‐
cious code from being rendered and inadvertently executed by your application’s
users.

Escape output with the PHP htmlentities() function that we mentioned earlier. Be
sure you use ENT_QUOTES as the second argument so that it escapes both single and
double quotes. Specify the appropriate character encoding (usually UTF-8) as the
third argument. Example 5-6 demonstrates how to escape HTML output before it is
rendered.

Example 5-6. Escape output with the htmlentities function

<?php
$output = '<p><script>alert("NSA backdoor installed");</script>';
echo htmlentities($output, ENT_QUOTES, 'UTF-8');

Some PHP template engines like twig/twig (my favorite) or smarty/smarty escape
output automatically. The Twig template engine by Sensio Labs, for example, escapes
all output by default unless you tell it otherwise. This is a brilliant default and pro‐
vides a nice safety net for your PHP web applications.

Passwords
Password security is monumentally important given the growing number of online
attacks. How often have you cancelled a credit card because a major retailer was
hacked? Many retailers have (and will) fall victim to malicious hackers because they
do not protect their systems with best security practices. Your PHP applications are
no different, and they are vulnerable to the same attacks unless you use appropriate
precautions.

One important precaution is password security. It is your duty to safely manage, hash,
and store user passwords. It doesn’t matter if your application is a trivial game or a
vault for top-secret business documents. Your users entrust you with their informa‐

80 | Chapter 5: Good Practices

https://packagist.org/packages/symfony/validator
https://packagist.org/packages/twig/twig
https://packagist.org/packages/smarty/smarty

tion and expect you to guard their information with the best security practices avail‐
able. I meet many PHP developers who don’t understand how to safely manage
passwords. After all, securely managing passwords is hard. Fortunately, PHP provides
built-in tools that make password security fairly easy. This section demonstrates how
to use these tools with modern security practices.

Never Know User Passwords
You should never know your users’ passwords. You should never be able to know
your users’ passwords. If your application’s database is hacked, you don’t want plain-
text or decryptable passwords sitting in your database. Leaked passwords are a seri‐
ous breach of trust, and they dump a mountain of legal liability on you or your
company. The less you know, the safer you are.

Never Restrict User Passwords
It frustrates me when a website requires my account password to satisfy a specific for‐
mat. It makes me even angrier when my account password cannot be longer than {N}
number of characters. Why!? I understand that password formats may be restricted
for compatibility with legacy applications or databases, but this is not an excuse for
poor security practices.

Never restrict your users’ passwords. If you require passwords to fit a particular pat‐
tern, you are effectively providing a roadmap for bad guys to hack your application. If
you must restrict user passwords, I recommend you only require a minimum length.
It is not unreasonable to blacklist commonly used or dictionary-based passwords,
too.

Never Email User Passwords
Never send passwords via email. If you send my password via email, I know three
things: you know my password; you are storing my password in plain text or in a
decryptable format; and you have no qualms sending my password over the Internet
in plain text.

Instead, send an email with a URL where I can choose or change my own password.
Web applications often generate a unique token that can only be used once to choose
or change a password. For example, suppose I forget my account password for your
web application. I click the “Forgot password” link on your login form, and I am
directed to a form where I enter my email address to request a new password. Your
application generates a unique token, and it associates this token with the account
identified by my email address. Your application sends an email to the account’s email
address with a URL that includes the unique token as a URL segment or a query-
string parameter. When I visit the URL, your application validates the token and, if

Passwords | 81

the token is valid, allows me to choose a new password for my account. After I choose
a new password, your application invalidates the token.

Hash User Passwords with bcrypt
You should hash user passwords. Do not encrypt user passwords. Encryption and
hashing are not synonymous. Encryption is a two-way algorithm, meaning what is
encrypted can later be decrypted by design. Hashing is a one-way algorithm. Hashed
data cannot be reverted to its original form, and identical data always produces the
same hash values.

When you store a user password in your database, you hash the password first and
store the password hash in your database. If hackers break into your database, they see
only meaningless password hashes that require a massive amount of time and NSA
resources to crack.

Many hashing algorithms are available (e.g., MD5, SHA1, bcrypt, scrypt). Some are
fast and designed to verify data integrity. Others are slow and designed to be safe and
secure. Slow, safe, and secure are what we want when it comes to password generation
and storage.

The most secure peer-reviewed hashing algorithm known today is bcrypt. Unlike
MD5 and SHA1, bcrypt is designed to be very slow. The bcrypt algorithm automati‐
cally salts data to foil potential rainbow table attacks. The bcrypt algorithm also con‐
sumes a large amount of time (measured in seconds) while iteratively hashing data to
generate a super-secure final hash value. The number of hash iterations is called the
work factor. A higher work factor makes it exponentially more expensive for a bad
guy to crack password hashes. The bcrypt algorithm is future-proof, too, because you
can simply increase its work factor as computers become faster.

The bcrypt algorithm is extensively peer-reviewed. Minds far greater than my own
have reviewed the bcrypt algorithm for potential exploits, and so far none has been
found. It is very important that you rely on peer-reviewed hashing algorithms. Never
create your own. There is safety in numbers, and odds are you are not a cryptography
expert (unless you are, in which case tell Bruce Schneier I said hello).

Password Hashing API
As you can see, there are a lot of considerations to make when working with user
passwords. However, Anthony Ferrara was kind enough to build the native password
hashing API available in PHP 5.5.0. PHP’s native password hashing API provides
easy-to-use functions that drastically simplify password hashing and verification. The
password hashing API also uses the bcrypt hashing algorithm by default.

82 | Chapter 5: Good Practices

http://blog.ircmaxell.com
http://php.net/manual/book.password.php
http://php.net/manual/book.password.php

Anthony Ferrara (also known as @ircmaxell on Twitter) is a Devel‐
oper Advocate at Google, and he is an authoritative source for all
things related to PHP performance and security. Anthony is also
the author of the PHP password hashing API. I encourage you to
follow Anthony on Twitter and read his blog. I want to say a big
thank you to Anthony. His contributions to PHP have single-
handedly improved PHP application security by making best secu‐
rity practices more accessible.

You’ll encounter two scenarios when building web applications: user registration and
user login. Let’s explore how the PHP password hashing API simplifies both
scenarios.

User registration
A web application can’t exist without users, and users need a way to sign up for an
account. Let’s assume our hypothetical application has a PHP file available at the
URL /register.php. This PHP file receives a URL-encoded HTTP POST request with an
email address and password. We create a user account if the email address is valid and
the password contains at least eight characters. This is an example HTTP POST
request:

POST /register.php HTTP/1.1
Content-Length: 43
Content-Type: application/x-www-form-urlencoded

email=john@example.com&password=sekritshhh!

Example 5-7 is the register.php file that receives the HTTP POST request.

Example 5-7. User registration script

01 <?php
02 try {
03 // Validate email
04 $email = filter_input(INPUT_POST, 'email', FILTER_VALIDATE_EMAIL);
05 if (!$email) {
06 throw new Exception('Invalid email');
07 }
08
09 // Validate password
10 $password = filter_input(INPUT_POST, 'password');
11 if (!$password || mb_strlen($password) < 8) {
12 throw new Exception('Password must contain 8+ characters');
13 }
14
15 // Create password hash
16 $passwordHash = password_hash(
17 $password,

Passwords | 83

https://twitter.com/ircmaxell
https://twitter.com/ircmaxell
http://blog.ircmaxell.com

18 PASSWORD_DEFAULT,
19 ['cost' => 12]
20);
21 if ($passwordHash === false) {
22 throw new Exception('Password hash failed');
23 }
24
25 // Create user account (THIS IS PSUEDO-CODE)
26 $user = new User();
27 $user->email = $email;
28 $user->password_hash = $passwordHash;
29 $user->save();
30
31 // Redirect to login page
32 header('HTTP/1.1 302 Redirect');
33 header('Location: /login.php');
34 } catch (Exception $e) {
35 // Report error
36 header('HTTP/1.1 400 Bad request');
37 echo $e->getMessage();
38 }

In Example 5-7:

• Lines 4–7 validate the user email address. We toss an exception if the email is
invalid.

• Lines 10–13 validate the plain-text user password pulled from the HTTP request
body. We toss an exception if the plain-text user password contains fewer than
eight characters.

• Lines 16–23 create a password hash with the PHP password hashing API’s pass
word_hash() function. The password_hash() function’s first argument is the
plain-text user password. The second argument is the PASSWORD_DEFAULT con‐
stant, which tells PHP to use the bcrypt hashing algorithm. The final argument is
an array of hashing options. The cost array key specifies the bcrypt work factor.
A work factor of 10 is used by default, but you should increase the cost factor for
your particular hardware so that password hashing requires 0.1 to 0.5 seconds to
finish. We toss an exception if the password hashing fails.

• Lines 26–29 demonstrate saving a hypothetical user account. These lines contain
pseudocode; you should replace these lines with code appropriate for your own
application. The point is that you persist the user record with the password hash
—not the plain-text password pulled from the HTTP request body. We also per‐
sist the email address that is used to locate and log in a user account.

84 | Chapter 5: Good Practices

Store password hashes in a VARCHAR(255) database column. This
gives you flexibility to continue storing future passwords that may
require more characters than the current bcrypt algorithm.

User login
Our hypothetical application also has a PHP file available at URL /login.php. This file
accepts an HTTP POST request that contains an email address and password used to
identify, authenticate, and log in a user. This is an example HTTP POST request:

POST /login.php HTTP/1.1
Content-Length: 43
Content-Type: application/x-www-form-urlencoded

email=john@example.com&password=sekritshhh!

The login.php file finds the user account identified by the email address, it verifies the
submitted password with the user account’s password hash, and it logs in the user
account. Example 5-8 shows the login.php file.

Example 5-8. User login script

01 <?php
02 session_start();
03 try {
04 // Get email address from request body
05 $email = filter_input(INPUT_POST, 'email');
06
07 // Get password from request body
08 $password = filter_input(INPUT_POST, 'password');
09
10 // Find account with email address (THIS IS PSUEDO-CODE)
11 $user = User::findByEmail($email);
12
13 // Verify password with account password hash
14 if (password_verify($password, $user->password_hash) === false) {
15 throw new Exception('Invalid password');
16 }
17
18 // Re-hash password if necessary (see note below)
19 $currentHashAlgorithm = PASSWORD_DEFAULT;
20 $currentHashOptions = array('cost' => 15);
21 $passwordNeedsRehash = password_needs_rehash(
22 $user->password_hash,
23 $currentHashAlgorithm,
24 $currentHashOptions
25);
26 if ($passwordNeedsRehash === true) {
27 // Save new password hash (THIS IS PSUEDO-CODE)

Passwords | 85

28 $user->password_hash = password_hash(
29 $password,
30 $currentHashAlgorithm,
31 $currentHashOptions
32);
33 $user->save();
34 }
35
36 // Save login status to session
37 $_SESSION['user_logged_in'] = 'yes';
38 $_SESSION['user_email'] = $email;
39
40 // Redirect to profile page
41 header('HTTP/1.1 302 Redirect');
42 header('Location: /user-profile.php');
43 } catch (Exception $e) {
44 header('HTTP/1.1 401 Unauthorized');
45 echo $e->getMessage();
46 }

In Example 5-8:

• Line 5 and 8 retrieve the email address and password from the HTTP request
body.

• Line 11 locates the user record associated with the email address submitted in the
HTTP request body. I use pseudocode in Example 5-8, and you should replace
this line with code specific to your own application.

• Lines 14–16 compare the plain-text password submitted in the HTTP request
body with the password hash stored in the user record. We compare the pass‐
word and password hash with the password_verify() function. If verification
fails, we toss an exception.

• Lines 19–34 make sure the user record’s password hash value is up-to-date with
the most current password algorithm options by invoking the pass

word_needs_rehash() function. If the user record’s password hash is out of date,
we create a new hash value using the most current algorithm options, and we
update the user record with the new hash value.

Verify password

The password_verify() function compares the plain-text password from the HTTP
request body to the password hash stored in the user record. This function accepts
two arguments. The first argument is the plain-text password. The second argument
is the existing password hash in the user record. If the password_verify() function
returns true, the plain-text password is valid and we log in the user. Otherwise, the
plain-text password is invalid and we abort the login process.

86 | Chapter 5: Good Practices

Rehash password
After line 17 in Example 5-8, authentication is successful and we can log in the user.
Before we do, however, it is important to check if the existing password hash in the
user record is outdated. If it is outdated, we create a new password hash.

Why should we create a new password hash? Pretend our application was created two
years ago when we used a bcrypt work factor of 10. Today we use a bcrypt work factor
of 20 because hackers are smarter and computers are faster. Unfortunately, there are
some user accounts whose password hashes were generated with a bcrypt work factor
of 10. After we verify the login request’s authenticity, we check if the existing user
record’s password hash needs to be updated with the password_needs_rehash()
function. This function makes sure a given password hash is created with the most
current hashing algorithm options. If a password hash does need to be rehashed,
rehash the plain-text password from the HTTP request body using the current algo‐
rithm options and update the user record with the new hash value.

It’s easiest to employ the password_needs_rehash() function in the
user login script because I have access to the old password hash and
the plain-text password at the same time.

Password Hashing API for PHP < 5.5.0
If you cannot use PHP 5.5.0 or newer, fear not. You can use Anthony Ferrara’s ircmax
ell/password-compat component. It implements all of these PHP password hashing
API functions:

• password_hash()

• password_get_info()

• password_needs_rehash()

• password_verify()

Ferrara’s ircmaxell/password-compat component is a drop-in replacement for the
modern PHP password hashing API. Include the component in your application with
Composer and you’re off and running.

Dates, Times, and Time Zones
Working with dates and times is hard. Pretty much every PHP developer has, at one
time or another, made a mistake working with dates and times. This is precisely why I
recommend you do not manage dates and times on your own. There are too many

Dates, Times, and Time Zones | 87

https://packagist.org/packages/ircmaxell/password-compat
https://packagist.org/packages/ircmaxell/password-compat

considerations to juggle, including date formats, time zones, daylight saving, leap
years, leap seconds, and months with variable numbers of days. It’s too easy for your
own calculations to become inaccurate. Instead, use the DateTime, DateInterval,
and DateTimeZone classes introduced in PHP 5.2.0. These helpful classes provide a
simple object-oriented interface to accurately create and manipulate dates, times, and
timezones.

Set a Default Time Zone
The first thing you should do is declare a default time zone for PHP’s date and time
functions. If you don’t set a default time zone, PHP shows an E_WARNING message.
There are two ways to set the default time zone. You can declare the default time zone
in the php.ini file like this:

date.timezone = 'America/New_York';

You can also declare the default time zone during runtime with the
date_default_timezone_set() function (Example 5-9).

Example 5-9. Set default timezone

<?php
date_default_timezone_set('America/New_York');

Either solution requires a valid time-zone identifier. You can find a complete list of
PHP time-zone identifiers at http://php.net/manual/timezones.php.

The DateTime Class
The DateTime class provides an object-oriented interface to manage date and time
values. A single DateTime instance represents a specific date and time. The DateTime
class constructor (Example 5-10) is the simplest way to create a new DateTime
instance.

Example 5-10. The DateTime class

<?php
$datetime = new DateTime();

Without arguments, the DateTime class constructor creates an instance that repre‐
sents the current date and time. You can pass a string argument into the DateTime
class constructor to specify a custom date and time (Example 5-11). The string argu‐
ment must use one of the valid date and time formats listed at http://php.net/manual/
datetime.formats.php.

88 | Chapter 5: Good Practices

http://php.net/manual/timezones.php
http://php.net/manual/datetime.formats.php
http://php.net/manual/datetime.formats.php

Example 5-11. DateTime class with argument

<?php
$datetime = new DateTime('2014-04-27 5:03 AM');

In an ideal world, you are given date and time data in a format that PHP understands.
Unfortunately, this is not always the case. Sometimes you must work with date and
time values in different and unexpected formats. I experience this problem on a daily
basis. Many of my clients send Excel spreadsheets with data to import into an applica‐
tion, and each client provides date and time values in wildly different formats. The
DateTime class makes this a nonissue.

Use the DateTime::createFromFormat() static method to create a DateTime instance
with a date and time string that uses a custom format. This method’s first argument is
the date and time string format. The second argument is the date and time string that
uses said format (Example 5-12).

Example 5-12. DateTime class with static constructor

<?php
$datetime = DateTime::createFromFormat('M j, Y H:i:s', 'Jan 2, 2014 23:04:12');

The DateTime::createFromFormat() static method accepts the
same date and time formats as the date() function. Valid date and
time formats are available at http://php.net/manual/datetime.create
fromformat.php.

The DateInterval Class
The DateInterval class is pretty much prerequisite knowledge for manipulating
DateTime instances. A DateInterval instance represents a fixed length of time (e.g.,
“two days”) or a relative length of time (e.g., “yesterday”). You use DateInterval
instances to modify DateTime instances. For example, the DateTime class provides
add() and sub() methods to manipulate a DateTime instance’s value. Both methods
accept a DateInterval argument that specifies the amount of time added to or sub‐
tracted from a DateTime instance.

Instantiate the DateInterval class with its constructor. The DateInterval class con‐
structor accepts a string argument that provides an interval specification. Interval
specifications are a little tricky at first, but there’s not much to them. First, an interval
specification is a string that begins with the letter P. Next, you append an integer. And
last, you append a period designator that qualifies the preceding integer value. Valid
period designators are:

Dates, Times, and Time Zones | 89

http://php.net/manual/datetime.createfromformat.php
http://php.net/manual/datetime.createfromformat.php

• Y (years)
• M (months)
• D (days)
• W (weeks)
• H (hours)
• M (minutes)
• S (seconds)

An interval specification can include both date and time values. If you include a time
value, separate the date and time parts with the letter T. For example, the interval
specification P2D means two days. The interval specification P2DT5H2M means two
days, five hours, and two minutes.

Example 5-13 demonstrates how to modify a DateTime instance by a given interval of
time using the add() method.

Example 5-13. The DateInterval class

<?php
// Create DateTime instance
$datetime = new DateTime('2014-01-01 14:00:00');

// Create two weeks interval
$interval = new DateInterval('P2W');

// Modify DateTime instance
$datetime->add($interval);
echo $datetime->format('Y-m-d H:i:s');

You can create an inverted DateInterval, too (Example 5-14). This lets you traverse a
DatePeriod instance in reverse chronology!

Example 5-14. An inverted DateInterval class

$dateStart = new \DateTime();
$dateInterval = \DateInterval::createFromDateString('-1 day');
$datePeriod = new \DatePeriod($dateStart, $dateInterval, 3);
foreach ($datePeriod as $date) {
 echo $date->format('Y-m-d'), PHP_EOL;
}

This outputs:

2014-12-08
2014-12-07

90 | Chapter 5: Good Practices

2014-12-06
2014-12-05

The DateTimeZone Class
If your application caters to an international clientele, you’ve probably wrestled with
time zones. Time zones are tricky, and they are a constant source of confusion for
many PHP developers.

PHP represents time zones with the DateTimeZone class. All you have to do is pass a
valid time-zone identifier into the DateTimeZone class constructor:

<?php
$timezone = new DateTimeZone('America/New_York');

Find a complete list of valid time-zone identifiers at http://php.net/
manual/timezones.php.

You often use DateTimeZone instances when creating DateTime instances. The Date
Time class constructor’s optional second argument is a DateTimeZone instance. The
DateTime instance’s value, and all modifications to its value, are now relative to the
specified time zone. If you omit the constructor’s second argument, the time zone is
determined by your default time-zone setting:

<?php
$timezone = new DateTimeZone('America/New_York');
$datetime = new DateTime('2014-08-20', $timezone);

You can change a DateTime instance’s time zone after instantiation with the setTime
zone() method (Example 5-15).

Example 5-15. DateTimeZone usage

<?php
$timezone = new DateTimeZone('America/New_York');
$datetime = new \DateTime('2014-08-20', $timezone);
$datetime->setTimezone(new DateTimeZone('Asia/Hong_Kong'));

I find it easiest if I always work in the UTC time zone. My server’s time zone is UTC,
and my PHP default time zone is UTC. If I persist date and time values into a database,
I save them as the UTC timezone. I convert the UTC date and time values to the appro‐
priate time zone when I display the data to application users.

Dates, Times, and Time Zones | 91

http://php.net/manual/timezones.php
http://php.net/manual/timezones.php

The DatePeriod Class
Sometimes you need to iterate a sequence of dates and times that recur over a specific
interval of time. Repeating calendar events are a good example. The DatePeriod class
solves this problem. The DatePeriod class constructor accepts three required argu‐
ments:

• A DateTime instance that represents the date and time from which iteration
begins

• A DateInterval instance that represents the interval of time between subsequent
dates and times

• An integer that represents the number of total iterations

A DatePeriod instance is an iterator, and each iteration yields a DateTime instance.
Example 5-16 yields three dates and times separated by two-week intervals.

Example 5-16. DatePeriod class usage

<?php
$start = new DateTime();
$interval = new DateInterval('P2W');
$period = new DatePeriod($start, $interval, 3);

foreach ($period as $nextDateTime) {
 echo $nextDateTime->format('Y-m-d H:i:s'), PHP_EOL;
}

The DatePeriod class constructor accepts an optional fourth argument that specifies
the period’s explicit end date and time. If you want to exclude the start date from the
period’s iteration, pass the DatePeriod::EXCLUDE_START_DATE constant as the final
constructor argument (Example 5-17).

Example 5-17. DatePeriod class usage with options

<?php
$start = new DateTime();
$interval = new DateInterval('P2W');
$period = new DatePeriod(
 $start,
 $interval,
 3,
 DatePeriod::EXCLUDE_START_DATE
);

foreach ($period as $nextDateTime) {
 echo $nextDateTime->format('Y-m-d H:i:s'), PHP_EOL;
}

92 | Chapter 5: Good Practices

The nesbot/carbon Component
If you work with dates and times more often than not, you should use Brian Nesbitt’s
nesbot/carbon PHP component. Carbon provides a simple user interface with many
useful methods for working with date and time values.

Databases
Many PHP applications persist information in a wide assortment of databases like
MySQL, PostgreSQL, SQLite, MSSQL, and Oracle. Each database provides its own
PHP extension to establish communication between PHP and the database. MySQL,
for example, uses the mysqli extension, which adds various mysqli_*() functions to
the PHP language. SQLite3 uses the SQLite3 extension, which adds the SQLite3,
SQLite3Stmt, and SQLite3Result classes to the PHP language. If you work with dif‐
ferent databases in one or more projects, you have to install and learn various PHP
database extensions and interfaces. This increases your cognitive and technical over‐
head.

The PDO Extension
This is exactly why PHP provides the native PDO extension. PDO (or PHP data
objects) is a collection of PHP classes that communicate with many different SQL
databases via a single user interface. Database implementations are abstracted away.
Instead, we can write and execute database queries with a single interface regardless
of the particular database system we happen to be using at the time.

Even though the PDO extension provides a single interface to
different databases, we still must write our own SQL statements.
This is the downside to PDO. Each database provides proprietary
features, and these features often require unique SQL syntax. I rec‐
ommend you write ANSI/ISO SQL when using PDO so that your
SQL doesn’t break if/when you change database systems. If you
absolutely must use a proprietary database feature, keep in mind
you must update your SQL statements if you change database sys‐
tems.

Database Connections and DSNs
First, select the database system most appropriate for your application. Install the
database, create the schema, and optionally load an initial dataset. Next, instantiate
the PDO class in PHP. The PDO instance establishes a connection between PHP and the
database.

Databases | 93

https://github.com/briannesbitt/Carbon

The PDO class constructor accepts a string argument called a DSN, or data source
name, that provides database connection details. A DSN begins with the database
driver name (e.g., mysql or sqlite), a :, and the remainder of the connection string.
The DSN connection string is different for each database, but it typically includes:

• Hostname or IP address
• Port number
• Database name
• Character set

Learn more about your database’s DSN format at http://php.net/
manual/pdo.drivers.php.

The PDO class constructor’s second and third arguments are a username and password
for your database. Provide these arguments if your database requires authentication.

Example 5-18 establishes a PDO connection to a MySQL database named acme. The
database is available at IP address 127.0.0.1, and it listens on the standard MySQL
port 3306. The database username is josh, and the database password is sekrit. The
connection character set is utf8.

Example 5-18. PDO constructor

<?php
try {
 $pdo = new PDO(
 'mysql:host=127.0.0.1;dbname=books;port=3306;charset=utf8',
 'USERNAME',
 'PASSWORD'
);
} catch (PDOException $e) {
 // Database connection failed
 echo "Database connection failed";
 exit;
}

The PDO class constructor’s first argument is the DSN. The DSN begins with mysql:.
This instructs PDO to use the PDO MySQL driver to connect to a MySQL database.
After the : character, we specify a semicolon-delimited list of keys and values. Specif‐
ically, we specify the host, dbname, port, and charset settings.

94 | Chapter 5: Good Practices

http://php.net/manual/pdo.drivers.php
http://php.net/manual/pdo.drivers.php

The PDO constructor throws a PDOException instance if the data‐
base connection fails. It’s important that you anticipate and catch
this exception when creating PDO connections.

Keep your database credentials secret
Example 5-18 is fine for demonstration purposes, but it isn’t safe. Never hard-code
database credentials into PHP files, especially PHP files served to the public. If PHP
exposes raw PHP code to HTTP clients due to a bug or server misconfiguration, your
database credentials are naked for the world to see. Instead, move your database cre‐
dentials into a configuration file above the document root and include them into your
PHP files when necessary.

Do not version control your credentials, either. Protect your cre‐
dentials with a .gitignore file. Otherwise, you will publish your
secret credentials into your code repository for others to see. This
is especially bad if you are using a public repository.

In this example, the settings.php file contains our database connection credentials. It
lives beneath the project root directory but above the document root. The index.php
file lives beneath the document root directory, and it is served to the public with a
web server. The index.php file uses the credentials in the settings.php file:

[project_root]
 settings.php
 public_html/ <-- document root
 index.php

This is the settings.php file:

<?php
$settings = [
 'host' => '127.0.0.1',
 'port' => '3306',
 'name' => 'acme',
 'username' => 'USERNAME',
 'password' => 'PASSWORD',
 'charset' => 'utf8'
];

Example 5-19 shows the index.php file. It includes the settings.php file and establishes
a PDO database connection.

Databases | 95

Example 5-19. PDO constructor with external settings

<?php
include('../settings.php');

$pdo = new PDO(
 sprintf(
 'mysql:host=%s;dbname=%s;port=%s;charset=%s',
 $settings['host'],
 $settings['name'],
 $settings['port'],
 $settings['charset']
),
 $settings['username'],
 $settings['password']
);

This is much safer. If the index.php code leaks to the public, our database credentials
remain secret.

Prepared Statements
We now have a PDO connection to a database, and we can use this connection to
read from and write to the database with SQL statements. We’re not done yet. When I
build PHP applications, I often need to customize SQL statements with dynamic
information from the current HTTP request. For example, the URL /user?
email=john@example.com shows profile information for a specific user account. The
SQL statement for this URL might be:

SELECT id FROM users WHERE email = "john@example.com";

A beginner PHP developer might build the SQL statement like this:

$sql = sprintf(
 'SELECT id FROM users WHERE email = "%s"',
 filter_input(INPUT_GET, 'email')
);

This is bad because the SQL string uses raw input from the HTTP request query
string. It provides a welcome mat for hackers to do bad things to your PHP applica‐
tion. Haven’t you heard of little Bobby Tables? It is extremely important to sanitize
user input that is used in a SQL statement. Fortunately, the PDO extension makes
input sanitization super-easy with prepared statements and bound parameters.

A prepared statement is a PDOStatement instance. However, I rarely instantiate the
PDOStatement class directly. Instead, I fetch a prepared statement object with the PDO
instance’s prepare() method. This method accepts a SQL statement string as its first
argument, and it returns a PDOStatement instance:

96 | Chapter 5: Good Practices

http://xkcd.com/327/

<?php
$sql = 'SELECT id FROM users WHERE email = :email';
$statement = $pdo->prepare($sql);

Pay close attention to the SQL statement. The :email is a named placeholder to which
I can safely bind any value. In Example 5-20, I bind the HTTP request query string to
the :email placeholder with the $statement instance’s bindValue() method.

Example 5-20. Prepared statement with email address

<?php
$sql = 'SELECT id FROM users WHERE email = :email';
$statement = $pdo->prepare($sql);

$email = filter_input(INPUT_GET, 'email');
$statement->bindValue(':email', $email);

The prepared statement automatically sanitizes the $email value, and it protects our
database from SQL injection attacks. You can include multiple named placeholders in
a SQL statement string and invoke the prepared statement’s bindValue() method for
each placeholder.

In Example 5-20, the :email named placeholder represents a string value. What if we
change our SQL statement to find a user by a numeric ID? In this case, we must pass
a third argument to the prepared statement’s bindValue() method to specify the type
of data bound to the placeholder. Without the third argument, a prepared statement
assumes bound data is a string.

Example 5-21 shows a modification of Example 5-20 that finds a user by numeric ID
instead of an email address. The numeric ID is pulled from the HTTP query string
parameter named id.

Example 5-21. Prepared statement with ID

<?php
$sql = 'SELECT email FROM users WHERE id = :id';
$statement = $pdo->prepare($sql);

$userId = filter_input(INPUT_GET, 'id');
$statement->bindValue(':id', $userId, PDO::PARAM_INT);

We use the PDO::PARAM_INT constant as the third argument. This tells PDO that the
bound data is an integer. There are several PDO constants you can use to specify vari‐
ous data types:

PDO::PARAM_BOOL
PDO::PARAM_NULL

Databases | 97

PDO::PARAM_INT
PDO::PARAM_STR (default)

See all PDO constants at http://php.net/manual/pdo.constants.php.

Query Results
We now have a prepared statement, and we’re ready to execute SQL queries against
the database. The prepared statement’s execute() method executes the statement’s
SQL statement with any bound data. If you are executing INSERT, UPDATE, or DELETE
statements, invoke the execute() method and you’re done. If you execute a SELECT
statement, you probably expect the database to return matching records. You can
fetch query results with the prepared statement’s fetch(), fetchAll(), fetchCol
umn(), and fetchObject() methods.

The PDOStatement instance’s fetch() method returns the next row from the result
set. I use this method to iterate large result sets, especially if the entire result set can‐
not fit in available memory (Example 5-22).

Example 5-22. Prepared statement results as associative array

<?php
// Build and execute SQL query
$sql = 'SELECT id, email FROM users WHERE email = :email';
$statement = $pdo->prepare($sql);
$email = filter_input(INPUT_GET, 'email');
$statement->bindValue(':email', $email, PDO::PARAM_INT);
$statement->execute();

// Iterate results
while (($result = $statement->fetch(PDO::FETCH_ASSOC)) !== false) {
 echo $result['email'];
}

In this example, I use the PDO::FETCH_ASSOC constant as the first argument in the
statement instance’s fetch() method. This argument determines how the fetch()
and fetchAll() methods return query results. You can use any of these constants:

PDO::FETCH_ASSOC

Prompts the fetch() or fetchAll() method to return an associative array. The
array keys are database column names.

98 | Chapter 5: Good Practices

http://php.net/manual/pdo.constants.php

PDO::FETCH_NUM

Prompts the fetch() or fetchAll() method to return a numeric array. The array
keys are the numeric index of database columns in your query result.

PDO::FETCH_BOTH

Prompts the fetch() or fetchAll() method to return an array that contains
both associative and numeric array keys. This is a combination of
PDO::FETCH_ASSOC and PDO::FETCH_NUM.

PDO::FETCH_OBJ

Prompts the fetch() or fetchAll() method to return an object whose proper‐
ties are database column names.

Learn more about fetching PDO statement results at http://php.net/
manual/pdostatement.fetch.php.

If you are working with smaller result sets, you can fetch all query results with the
prepared statement’s fetchAll() method (Example 5-23). I typically discourage this
method unless you are absolutely sure the complete query result is small enough to fit
in available memory.

Example 5-23. Prepared statement fetch all results as associative array

<?php
// Build and execute SQL query
$sql = 'SELECT id, email FROM users WHERE email = :email';
$statement = $pdo->prepare($sql);
$email = filter_input(INPUT_GET, 'email');
$statement->bindValue(':email', $email, PDO::PARAM_INT);
$statement->execute();

// Iterate results
$results = $statement->fetchAll(PDO::FETCH_ASSOC);
foreach ($results as $result) {
 echo $result['email'];
}

If you are concerned only with a single column in your query result, you can use the
prepared statement’s fetchColumn() method. This method, similar to the fetch()
method, returns the value of a single column from the next row of the query result
(Example 5-24). The fetchColumn() method’s one and only argument is the index of
the desired column.

Databases | 99

http://php.net/manual/pdostatement.fetch.php
http://php.net/manual/pdostatement.fetch.php

The query result column order matches the column order specified
in the SQL query.

Example 5-24. Prepared statement fetch one column, one row at a time as associative
array

<?php
// Build and execute SQL query
$sql = 'SELECT id, email FROM users WHERE email = :email';
$statement = $pdo->prepare($sql);
$email = filter_input(INPUT_GET, 'email');
$statement->bindValue(':email', $email, PDO::PARAM_INT);
$statement->execute();

// Iterate results
while (($email = $statement->fetchColumn(1)) !== false) {
 echo $email;
}

In Example 5-24, the email column is listed second in the SQL query. It therefore
becomes the second column in each query result row, and I pass the number 1 into
the fetchColumn() method (columns are zero-indexed).

You can also use the prepared statement’s fetchObject() method to fetch the next
query result row as an object whose property names are the SQL query result col‐
umns (Example 5-25).

Example 5-25. Prepared statement fetch row as object

<?php
// Build and execute SQL query
$sql = 'SELECT id, email FROM users WHERE email = :email';
$statement = $pdo->prepare($sql);
$email = filter_input(INPUT_GET, 'email');
$statement->bindValue(':email', $email, PDO::PARAM_INT);
$statement->execute();

// Iterate results
while (($result = $statement->fetchObject()) !== false) {
 echo $result->name;
}

Transactions
The PDO extension also supports transactions. A transaction is a set of database
statements that execute atomically. In other words, a transaction is a collection of

100 | Chapter 5: Good Practices

SQL queries that are either all executed successfully or not executed at all. Transac‐
tion atomicity encourages data consistency, safety, and durability. A nice side effect of
transactions is improved performance, because you are effectively queuing multiple
queries to be executed together at one time.

Not all databases support transactions. Check your database’s docu‐
mentation and its associated PHP PDO driver for more
information.

Transactions are simple to use with the PDO extension. You build and execute SQL
statements exactly as demonstrated in Example 5-25. There is only one difference.
You surround SQL statement executions with the PDO instance’s beginTransaction()
and commit() methods. The beginTransaction() method causes PDO to queue sub‐
sequent SQL query executions rather than execute them immediately. The commit()
method executes queued queries in an atomic transaction. If a single query in the
transaction fails, none of the transaction queries is applied. Remember, a transaction
is all or nothing.

Atomicity is important when data integrity is paramount. Let’s explore example code
that handles bank account transactions. Our code can deposit funds into an account.
It can also withdraw funds from an account assuming there are sufficient funds. The
code in Example 5-26 transfers $50 from one account to another account. It does not
use a database transaction.

Example 5-26. Database query without transaction

<?php
require 'settings.php';

// PDO connection
try {
 $pdo = new PDO(
 sprintf(
 'mysql:host=%s;dbname=%s;port=%s;charset=%s',
 $settings['host'],
 $settings['name'],
 $settings['port'],
 $settings['charset']
),
 $settings['username'],
 $settings['password']
);
} catch (PDOException $e) {
 // Database connection failed
 echo "Database connection failed";

Databases | 101

 exit;
}

// Statements
$stmtSubtract = $pdo->prepare('
 UPDATE accounts
 SET amount = amount - :amount
 WHERE name = :name
');
$stmtAdd = $pdo->prepare('
 UPDATE accounts
 SET amount = amount + :amount
 WHERE name = :name
');

// Withdraw funds from account 1
$fromAccount = 'Checking';
$withdrawal = 50;
$stmtSubtract->bindParam(':name', $fromAccount);
$stmtSubtract->bindParam(':amount', $withDrawal, PDO::PARAM_INT);
$stmtSubtract->execute();

// Deposit funds into account 2
$toAccount = 'Savings';
$deposit = 50;
$stmtAdd->bindParam(':name', $toAccount);
$stmtAdd->bindParam(':amount', $deposit, PDO::PARAM_INT);
$stmtAdd->execute();

This seems fine, right? It’s not. What happens if our server suddenly shuts down after
we withdraw $50 from account 1 and before we deposit $50 into account 2? Perhaps
our hosting company had a power outage or a fire or a flood or was afflicted by some
other calamity. What happens to the $50 withdrawn from account 1? The funds are
not deposited into account 2. The funds disappear. We can protect data integrity with
a database transaction (Example 5-27).

Example 5-27. Database query with transaction

<?php
require 'settings.php';

// PDO connection
try {
 $pdo = new PDO(
 sprintf(
 'mysql:host=%s;dbname=%s;port=%s;charset=%s',
 $settings['host'],
 $settings['name'],
 $settings['port'],
 $settings['charset']

102 | Chapter 5: Good Practices

),
 $settings['username'],
 $settings['password']
);
} catch (PDOException $e) {
 // Database connection failed
 echo "Database connection failed";
 exit;
}

// Statements
$stmtSubtract = $pdo->prepare('
 UPDATE accounts
 SET amount = amount - :amount
 WHERE name = :name
');
$stmtAdd = $pdo->prepare('
 UPDATE accounts
 SET amount = amount + :amount
 WHERE name = :name
');

// Start transaction
$pdo->beginTransaction();

// Withdraw funds from account 1
$fromAccount = 'Checking';
$withdrawal = 50;
$stmtSubtract->bindParam(':name', $fromAccount);
$stmtSubtract->bindParam(':amount', $withDrawal, PDO::PARAM_INT);
$stmtSubtract->execute();

// Deposit funds into account 2
$toAccount = 'Savings';
$deposit = 50;
$stmtAdd->bindParam(':name', $toAccount);
$stmtAdd->bindParam(':amount', $deposit, PDO::PARAM_INT);
$stmtAdd->execute();

// Commit transaction
$pdo->commit();

Example 5-27 wraps the withdrawal and deposit into a single database transaction.
This ensures that both execute successfully or not at all. Our data remains consistent.

Multibyte Strings
PHP assumes each character in a string is an 8-bit character that occupies a single
byte of memory. Unfortunately, this is a naive assumption that breaks down as soon
as you work with non-English characters. You might localize your PHP application

Multibyte Strings | 103

for international users. Your blog might receive comments written in Spanish, Ger‐
man, or Norwegian. Your users’ names might contain accented characters. My point
is that you’ll often encounter multibyte characters, and you must accommodate them
correctly.

When I say multibyte character, I mean any character that is not one of the 128 char‐
acters in the traditional ASCII character set. Some examples are ñ, ë, â, ô, à, æ, and ø.
There are many others. PHP’s default string-manipulation functions assume all
strings use only 8-bit characters. If you manipulate a Unicode string that contains
multibyte characters with PHP’s native string functions, you will get incorrect and
unexpected results.

Unicode is an international standard that assigns a number to each
unique character from many different languages. It is maintained
by the Unicode Consortium.

You can avoid multibyte string errors by installing the mbstring PHP extension. This
extension introduces multibyte-aware string functions that replace most of PHP’s
native string-manipulation functions. For example, use the multibyte-aware
mb_strlen() function instead of PHP’s native strlen() function.

To this day I’m still training myself to use the mbstring multibyte string functions
instead of PHP’s default string functions. It’s a tough habit to form, but you must use
the multibyte string functions if you work with Unicode strings. Otherwise, it’s easy
for multibyte Unicode data to become malformed.

I use the Iñtërnâtiônàlizætiøn string when testing my PHP
applications for multibyte character support.

Character Encoding
Use UTF-8. If you leave this section with one piece of advice, this is it. All modern
web browsers understand UTF-8 character encoding. A character encoding is a
method of packaging Unicode data in a format that can be stored in memory or sent
over the wire between a server and client. The UTF-8 character encoding is just one
of many available character encodings. UTF-8, however, is the most popular charac‐
ter encoding and is supported by all modern web browsers.

104 | Chapter 5: Good Practices

http://www.unicode.org
http://php.net/manual/book.mbstring.php

Unicode and UTF-8 Explained

Tom Scott provides the best explanation of Unicode and UTF-8
that I’ve seen. Joel Spolsky also writes a nice explanation of charac‐
ter encodings on his website.

Character encoding is complex and confuses a lot of developers. When you work
with multibyte strings, keep this advice in mind:

1. Always know the character encoding of your data.
2. Store data with the UTF-8 character encoding.
3. Output data with the UTF-8 character encoding.

The mbstring extension doesn’t just manipulate Unicode strings. It also converts
multibyte strings between various character encodings. This is useful when clients
export Excel spreadsheet data with a Windows-specific character encoding when
what I really want is UTF-8 encoded data. Use the mb_detect_encoding() and
mb_convert_encoding() functions to convert Unicode strings from one character
encoding to another.

Output UTF-8 Data
When you work with multibyte characters, it is important that you tell PHP you are
working with the UTF-8 character encoding. It’s easiest to do this in your php.ini file
like this:

default_charset = "UTF-8";

The default character set is used by many PHP functions, including htmlentities(),
html_entity_decode(), htmlspecialchars(), and the mbstring functions. This
value is also added to the default Content-Type header returned by PHP unless
explicitly specified with the header() function like this:

<?php
header('Content-Type: application/json;charset=utf-8');

You cannot use the header() function after any output is returned
from PHP.

I also recommend you include this meta tag in your HTML document header:

<meta charset="UTF-8"/>

Multibyte Strings | 105

http://bit.ly/ts-unicode
http://bit.ly/ts-unicode
http://bit.ly/jspolsky
http://bit.ly/jspolsky

Streams
Streams are probably the most amazing and least used modern PHP feature. Even
though streams were introduced in PHP 4.3.0, many developers still don’t know
about streams because they are rarely mentioned, and they are poorly documented.

Streams were introduced with PHP 4.3.0 as a way of generalizing file, network, data
compression, and other operations which share a common set of functions and uses.
In its simplest definition, a stream is a resource object which exhibits streamable
behavior. That is, it can be read from or written to in a linear fashion, and may be able
to fseek() to an arbitrary location within the stream.

—PHP Manual

That’s a mouthful, right? Let’s reduce this into something more understandable. A
stream is a transfer of data between an origin and destination. That’s it. The origin
and destination can be a file, a command-line process, a network connection, a ZIP
or TAR archive, temporary memory, standard input or output, or any other resource
available via PHP’s stream wrappers.

If you’ve read from or written to a file, you’ve used streams. If you’ve read from
php://stdin or written to php://stdout, you’ve used streams. Streams provide the
underlying implementation for many of PHP’s IO functions like file_get_con
tents(), fopen(), fgets(), and fwrite(). PHP’s stream functions help us manipu‐
late different stream resources (origins and destinations) with a single interface.

I think of streams as a pipe that carries water from one location to
another. As water flows through the pipe from origin to destina‐
tion, we can filter the water, we can transform the water, we can
add water, and we can remove water. (Hint: The water is a meta‐
phor for data.)

Stream Wrappers
There are different types of streamable data that require unique protocols for reading
and writing data. We call these protocols stream wrappers. For example, we can read
and write data to the filesystem. We can talk with remote web servers via HTTP,
HTTPS, or SSH (secure shell). We can open, read, and write ZIP, RAR, or PHAR
archives. All of these communication methods imply the same generic process:

1. Open communication.
2. Read data.
3. Write data.
4. Close communication.

106 | Chapter 5: Good Practices

http://php.net/manual/wrappers.php
http://php.net/manual/wrappers.php

Although the process is the same, reading and writing a filesystem file is different
from sending or receiving HTTP messages. Stream wrappers, however, encapsulate
these differences behind a common interface.

Every stream has a scheme and a target. We specify the scheme and target in the
stream’s identifier using this familiar format:

<scheme>://<target>

The <scheme> identifies the stream’s wrapper. The <target> identifies the stream data
source. Example 5-28 creates a PHP stream to/from the Flickr API. It uses the HTTP
stream wrapper.

Example 5-28. Flickr API with HTTP stream wrapper

<?php
$json = file_get_contents(
 'http://api.flickr.com/services/feeds/photos_public.gne?format=json'
);

Don’t be fooled by what appears to be a traditional website URL. The file_get_con
tents() function’s string argument is actually a stream identifier. The http scheme
prompts PHP to use the HTTP stream wrapper. The argument’s remainder is the
stream target. The stream target looks like a traditional website URL only because
that’s what the HTTP stream wrapper expects. This may not be true for other stream
wrappers.

Reread this paragraph several times until it becomes ingrained in
your memory. Many PHP developers don’t understand that a tradi‐
tional URL is actually a PHP stream wrapper identifier in disguise.

The file:// stream wrapper

We use the file_get_contents(), fopen(), fwrite(), and fclose() methods to
read from and write to the filesystem. We rarely consider these functions as using
PHP streams, because the default PHP stream wrapper is file://. We’re using PHP
streams and we don’t even realize it! Example 5-29 creates a stream to/from the /etc/
hosts file using the file:// stream wrapper.

Example 5-29. Implicit file:// stream wrapper

<?php
$handle = fopen('/etc/hosts', 'rb');
while (feof($handle) !== true) {
 echo fgets($handle);

Streams | 107

}
fclose($handle);

Example 5-30 accomplishes the same task. This example, however, explicitly specifies
the file:// stream wrapper in the stream identifier.

Example 5-30. Explicit file:// stream wrapper

<?php
$handle = fopen('file:///etc/hosts', 'rb');
while (feof($handle) !== true) {
 echo fgets($handle);
}
fclose($handle);

We usually omit the file:// stream wrapper because PHP assumes this is the default
value.

The php:// stream wrapper

PHP developers who write command-line scripts will appreciate the php:// stream
wrapper. This stream wrapper communicates with the PHP script’s standard input,
standard output, and standard error file descriptors. You can open, read from, and
write to these four streams with PHP’s filesystem functions:

php://stdin

This read-only PHP stream exposes data provided via standard input. For exam‐
ple, a PHP script can use this stream to receive information piped into the script
on the command line.

php://stdout

This PHP stream lets you write data to the current output buffer. This stream is
write-only and cannot be read or seeked.

php://memory

This PHP stream lets you read and write data to system memory. The downside
to this PHP stream is that available memory is finite. It’s safer to use the php://
temp stream instead.

php://temp

This PHP stream acts just like php://memory, except that when available memory
is gone, PHP instead writes to a temporary file.

Other stream wrappers
PHP and PHP extensions provide many other stream wrappers. For example, there
are stream wrappers to communicate with ZIP and TAR archives, FTP servers, data-

108 | Chapter 5: Good Practices

compression libraries, Amazon APIs, and more. A popular misconception is that the
fopen(), fgets(), fputs(), feof(), fclose(), and other PHP filesystem functions
are for filesystem files only. This is not true. PHP’s filesystem functions work with all
stream wrappers that support them. For example, we can use fopen(), fgets(),
fputs(), feof(), and fclose() to interact with a ZIP archive, Amazon S3 (with the
custom S3 wrapper), or even Dropbox (with the custom Dropbox wrapper).

Learn more about the php:// stream wrapper at PHP.net.

Custom stream wrappers
It’s also possible to write your own custom PHP stream wrapper. PHP provides an
example streamWrapper class that demonstrates how to write a custom stream wrap‐
per that supports some or all of the PHP filesystem functions. Learn more about cus‐
tom PHP stream wrappers at:

• http://php.net/manual/class.streamwrapper.php
• http://php.net/manual/stream.streamwrapper.example-1.php

Stream Context
Some PHP streams accept an optional set of parameters, or a stream context, to cus‐
tomize the stream’s behavior. Different stream wrappers expect different context
parameters. You create a stream context with the stream_context_create() func‐
tion. The returned context object can be passed into and used by most PHP filesys‐
tem and stream functions.

For example, did you know that you can send an HTTP POST request with the
file_get_contents() function? You can with a stream context object
(Example 5-31).

Example 5-31. Stream context

<?php
$requestBody = '{"username":"josh"}';
$context = stream_context_create(array(
 'http' => array(
 'method' => 'POST',
 'header' => "Content-Type: application/json;charset=utf-8;\r\n" .
 "Content-Length: " . mb_strlen($requestBody),
 'content' => $requestBody

Streams | 109

http://bit.ly/streamwrap
http://www.dropbox-php.com/
http://bit.ly/s-wrapper
http://php.net/manual/class.streamwrapper.php
http://php.net/manual/stream.streamwrapper.example-1.php

)
));
$response = file_get_contents('https://my-api.com/users', false, $context);

The stream context is an associative array whose topmost array key is the stream
wrapper name. The stream context’s array values are specific to each stream wrapper.
Consult the appropriate PHP stream wrapper’s documentation for a list of valid set‐
tings.

Stream Filters
So far we’ve talked about opening, reading from, and writing to PHP streams. How‐
ever, the true power of PHP streams is filtering, transforming, adding, or removing
stream data in transit. Imagine opening a stream to a Markdown file and converting
it into HTML automatically as you read the file into memory.

PHP provides several built-in stream filters, including
string.rot13, string.toupper, string.tolower, and
string.strip_tags. These are not useful. Use custom stream fil‐
ters, instead.

You attach a filter to an existing stream with the stream_filter_append() function.
Example 5-32 uses the string.toupper filter to read data from a text file on the local
filesystem and convert its content to uppercase characters. I don’t encourage using
this particular stream filter. I’m only demonstrating how to attach a filter to a stream.

Example 5-32. Stream filter string.toupper example

<?php
$handle = fopen('data.txt', 'rb');
stream_filter_append($handle, 'string.toupper');
while(feof($handle) !== true) {
 echo fgets($handle); // <-- Outputs all uppercase characters
}
fclose($handle);

You can also attach a filter to a stream with the php://filter stream wrapper. This
only works if you attach the filter when you first open the PHP stream. Example 5-33
accomplishes the same task as the previous example, except it attaches the filter with
php://filter strategy.

Example 5-33. Stream filter string.toupper example with php://filter

<?php
$handle = fopen('php://filter/read=string.toupper/resource=data.txt', 'rb');

110 | Chapter 5: Good Practices

while(feof($handle) !== true) {
 echo fgets($handle); // <-- Outputs all uppercase characters
}
fclose($handle);

Pay close attention to the fopen() function’s first argument. The argument is a stream
identifier that uses the php:// stream wrapper. This is the stream identifier target:

filter/read=<filter_name>/resource=<scheme>://<target>

This strategy may appear superfluous compared to the stream_filter_append()
function. However, some PHP filesystem functions like file() or fpassthru() do
not give you the opportunity to attach filters after the function is called. The php://
filter stream wrapper is the only way to attach stream filters with these functions.

Let’s look at a more realistic stream filter example. At New Media Campaigns, our in-
house content management system archives nginx access logs to rsync.net. We keep
one log file per day, and each log file is compressed with bzip2. Log filenames use the
format YYYY-MM-DD.log.bz2. I was asked to extract access data for a specific
domain for the past 30 days. This seems like a lot of work, right? I need to calculate a
date range, determine log filenames, FTP into rsync.net, download files, decompress
files, iterate each file line-by-line, extract appropriate lines, and write access data to an
output destination. Believe it or not, PHP streams let me do all of this in fewer than
20 lines of code (Example 5-34).

Example 5-34. Iterate bzipped log files with DateTime and stream filters

01 <?php
02 $dateStart = new \DateTime();
03 $dateInterval = \DateInterval::createFromDateString('-1 day');
04 $datePeriod = new \DatePeriod($dateStart, $dateInterval, 30);
05 foreach ($datePeriod as $date) {
06 $file = 'sftp://USER:PASS@rsync.net/' . $date->format('Y-m-d') . '.log.bz2';
07 if (file_exists($file)) {
08 $handle = fopen($file, 'rb');
09 stream_filter_append($handle, 'bzip2.decompress');
10 while (feof($handle) !== true) {
11 $line = fgets($handle);
12 if (strpos($line, 'www.example.com') !== false) {
13 fwrite(STDOUT, $line);
14 }
15 }
16 fclose($handle);
17 }
18 }

In Example 5-34:

Streams | 111

http://www.newmediacampaigns.com
http://rsync.net

• Lines 2–4 create a DatePeriod instance that spans the past 30 days using an
inverted, one-day interval.

• Line 6 creates a log filename using the DateTime instance returned by each Date
Period iteration.

• Lines 8–9 open a stream resource to the log file on rsync.net with the SFTP
stream wrapper. We decompress the bzip2 log file on the fly by appending the
bzip2.decompress stream filter to the log file stream resource.

• Lines 10–15 iterate the decompressed log file contents using PHP’s standard file‐
system functions.

• Lines 12–14 inspect each line for a given domain. If the domain is present, the
line is written to standard output.

The bzip2.decompress stream filter lets us automatically decompress log files as we
read them. The alternative solution is manually decompressing log files into a tempo‐
rary directory with shell_exec() or bzdecompress(), iterating the decompressed
files, and cleaning up the decompressed files when our PHP script completes. PHP
streams are a simpler, more elegant solution.

Custom Stream Filters
It’s possible to write custom stream filters, too. In fact, custom stream filters are the
primary reason you use stream filters. Custom stream filters are PHP classes that
extend the php_user_filter built-in class. The custom stream class must implement
the filter(), onCreate(), and onClose() methods. You must register custom stream
filters with the stream_filter_register() function.

Here Comes the Bucket Brigade!

A PHP stream subdivides data into sequential buckets, and each
bucket contains a fixed amount of stream data (e.g., 4,096 bytes). If
we use our pipe metaphor, water is carried from origin to destina‐
tion in individual buckets that float through the pipe and pass
through stream filters. Each stream filter receives and manipulates
one or more buckets at a time. The bucket or buckets received by a
filter at any given time is called a bucket brigade.

Let’s create a custom stream filter that censors dirty words from a stream as its data is
read into memory (Example 5-35). First, we must create a PHP class that extends
php_user_filter. This class must implement a filter() method that acts as a sieve
through which stream buckets pass. It receives a bucket brigade from upstream, it
manipulates each bucket object in the brigade, and it sends each bucket into the

112 | Chapter 5: Good Practices

http://php.net/manual/en/class.php-user-filter.php

downstream bucket brigade toward the stream destination. This is our DirtyWords
Filter custom stream class.

Each bucket object in a bucket brigade has two public properties:
data and datalen. These are the bucket content and content
length, respectively.

Example 5-35. Custom DirtyWordsFilter stream filter

class DirtyWordsFilter extends php_user_filter
{
 /**
 * @param resource $in Incoming bucket brigade
 * @param resource $out Outgoing bucket brigade
 * @param int $consumed Number of bytes consumed
 * @param bool $closing Last bucket brigade in stream?
 */
 public function filter($in, $out, &$consumed, $closing)
 {
 $words = array('grime', 'dirt', 'grease');
 $wordData = array();
 foreach ($words as $word) {
 $replacement = array_fill(0, mb_strlen($word), '*');
 $wordData[$word] = implode('', $replacement);
 }
 $bad = array_keys($wordData);
 $good = array_values($wordData);

 // Iterate each bucket from incoming bucket brigade
 while ($bucket = stream_bucket_make_writeable($in)) {
 // Censor dirty words in bucket data
 $bucket->data = str_replace($bad, $good, $bucket->data);

 // Increment total data consumed
 $consumed += $bucket->datalen;

 // Send bucket to downstream brigade
 stream_bucket_append($out, $bucket);
 }

 return PSFS_PASS_ON;
 }
}

The filter() method receives, manipulates, and forwards buckets of stream data.
Inside the filter() function, we iterate the buckets in the $in bucket brigade and
replace dirty words with their censored values. This method returns the

Streams | 113

PSFS_PASS_ON constant to indicate successful operation. This method accepts four
arguments:

$in

A brigade of one or more upstream buckets that contains stream data from the
stream origin

$out

A brigade of one or more buckets that continue downstream toward the stream
destination

&$consumed

The total number of stream bytes consumed by our custom filter

$closing

Is the filter() method receiving the last available bucket brigade?

We must register the DirtWordsFilter custom stream filter with the stream_fil
ter_register() function (Example 5-36).

Example 5-36. Register custom DirtyWordsFilter stream filter

<?php
stream_filter_register('dirty_words_filter', 'DirtyWordsFilter');

The first argument is the filter name that identifies our custom filter. The second
argument is our custom filter’s class name. We can now use our custom stream filter
(Example 5-37).

Example 5-37. Use DirtyWordsFilter stream filter

<?php
$handle = fopen('data.txt', 'rb');
stream_filter_append($handle, 'dirty_words_filter');
while (feof($handle) !== true) {
 echo fgets($handle); // <-- Outputs censored text
}
fclose($handle);

If you want to learn more about PHP streams, watch Elizabeth
Smith’s Nomad PHP presentation. It’s not free, but it’s worth the
admission price. You can also read more about PHP streams in the
PHP documentation.

114 | Chapter 5: Good Practices

http://bit.ly/nomad-php
http://php.net/manual/en/book.stream.php

Errors and Exceptions
Things go wrong. It’s a fact of life. No matter how hard we concentrate or how much
time we pour into a project, there are always bugs and errors that we overlook. For
example, have you ever used a PHP application that displays only a blank white page?
Have you ever visited a PHP website that spits out an indecipherable stack trace?
These unfortunate situations indicate an application error or uncaught exception.

Errors and exceptions are wonderful tools that help you anticipate the unexpected.
They help you catch problems and fail gracefully. Errors and exceptions, however, are
confusingly similar. They both announce when something is wrong, they both pro‐
vide an error message, and they both have an error type. Errors, however, are older
than exceptions. They are a procedural device that halts script execution and, if possi‐
ble, delegates error handling to a global error handler function. Some errors are unre‐
coverable. Today we largely rely on exceptions instead of errors, but we must still
maintain a defensive posture; many older PHP functions (e.g., fopen()) still trigger
errors when things go wrong.

It’s possible to circumvent PHP errors with the @ prefix in front of a
PHP function that might trigger an error (e.g., @fopen()). This is
an antipattern. I recommend you change your code to avoid these
situations.

Exceptions are an object-oriented evolution of PHP’s error handling system. They are
instantiated, thrown, and caught. Exceptions are a more flexible device that antici‐
pates and handles problems in situ without halting script execution. Exceptions are
also an offensive and defensive device. We must anticipate exceptions thrown by
third-party vendor code with try {} catch {} blocks. We can also act offensively by
throwing an exception; this delegates exception handling to other developers when
we don’t know how to handle a given situation on our own.

Exceptions
An exception is an object of class Exception that is thrown when you encounter an
irreparable situation from which you cannot recover (e.g., a remote API is unrespon‐
sive, a database query fails, or a precondition is not satisfied). I call these exceptional
situations. Exceptions are used offensively to delegate responsibility when a problem
occurs, and they are used defensively to anticipate and mitigate potential problems.

You instantiate an Exception object with the new keyword just like any other PHP
object. An Exception object has two primary properties: a message and a numeric
code. The message describes what went wrong. The numeric code is optional and can

Errors and Exceptions | 115

be used to provide context for a given exception. You provide the message and
optional numeric code when you instantiate an Exception object like this:

<?php
$exception = new Exception('Danger, Will Robinson!', 100);

You can inspect an Exception object with its getCode() and getMessage() public
instance methods like this:

<?php
$code = $exception->getCode(); // 100
$message = $exception->getMessage(); // 'Danger...'

Throw exceptions
You can assign an exception to a variable upon instantiation, but exceptions are
meant to be thrown. If you write code for other developers, you must act offensively
in exceptional situations, meaning you throw exceptions when your code encounters
exceptional situations or cannot otherwise operate under current conditions. PHP
component and framework authors, in particular, cannot presume how to handle
exceptional situations; instead, they throw an exception and delegate responsibility to
the developer using their code.

When an exception is thrown, code execution is immediately halted and subsequent
PHP code is not run. To throw an exception, use the throw keyword followed by the
Exception instance:

<?php
throw new Exception('Something went wrong. Time for lunch!');

You can only throw an instance of class Exception (or a subclass of Exception). PHP
provides these built-in Exception subclasses:

• Exception

• ErrorException

The Standard PHP Library (SPL) supplements PHP’s built-in exceptions with these
additional Exception subclasses:

• LogicException

— BadFunctionCallException

— BadMethodCallException

— DomainException

— InvalidArgumentException

— LengthException

116 | Chapter 5: Good Practices

http://php.net/manual/class.exception.php
http://php.net/manual/class.errorexception.php
http://php.net/manual/book.spl.php
http://php.net/manual/class.logicexception.php
http://php.net/manual/class.badfunctioncallexception.php
http://php.net/manual/class.badmethodcallexception.php
http://php.net/manual/class.domainexception.php
http://php.net/manual/class.invalidargumentexception.php
http://php.net/manual/class.lengthexception.php

— OutOfRangeException

• RuntimeException

— OutOfBoundsException

— OverflowException

— RangeException

— UnderflowException

— UnexpectedValueException

Each subclass exists for a certain situation and provides context for why an exception
is thrown. For example, if a PHP component method expects a string argument with
at least five characters but is given a string with only two characters, it can throw an
InvalidArgumentException instance. Because PHP provides an exception class, you
can easily extend the Exception class to create your own custom exception subclasses
with their own custom properties and methods. Which exception subclass you use is
subjective. Choose or create the exception subclass that best answers why am I throw‐
ing this exception?, and document your choice.

Catch exceptions
Thrown exceptions should be caught and handled gracefully. You must act defen‐
sively when using PHP components and frameworks written by other developers.
Good PHP components and frameworks provide documentation that explains when
and under what circumstances they throw exceptions. It is your responsibility to
anticipate, catch, and handle these exceptions. Uncaught exceptions terminate your
PHP application with a fatal error and, worse, can expose sensitive debugging details
to your PHP application’s users. We’ve all seen this. It is very important that you catch
exceptions and handle them gracefully.

Surround code that might throw an exception with a try/catch block to intercept
and handle potential exceptions. Example 5-38 demonstrates a failed PDO database
connection that throws a PDOException object. The exception is caught by the catch
block, and we show a friendly error message instead of an ugly stack trace.

Example 5-38. Catch thrown exception

<?php
try {
 $pdo = new PDO('mysql://host=wrong_host;dbname=wrong_name');
} catch (PDOException $e) {
 // Inspect the exception for logging
 $code = $e->getCode();
 $message = $e->getMessage();

Errors and Exceptions | 117

http://php.net/manual/class.outofrangeexception.php
http://php.net/manual/class.runtimeexception.php
http://php.net/manual/class.outofboundsexception.php
http://php.net/manual/class.overflowexception.php
http://php.net/manual/class.rangeexception.php
http://php.net/manual/class.underflowexception.php
http://php.net/manual/class.unexpectedvalueexception.php

 // Display a nice message to the user
 echo 'Something went wrong. Check back soon, please.';
 exit;
}

You can use multiple catch blocks to intercept multiple types of exceptions. This is
useful if you need to act differently based on the type of exception thrown. You can
also use a finally block to always run a block of code after you catch any exception
(Example 5-39).

Example 5-39. Catch multiple thrown exceptions

<?php
try {
 throw new Exception('Not a PDO exception');
 $pdo = new PDO('mysql://host=wrong_host;dbname=wrong_name');
} catch (PDOException $e) {
 // Handle PDO exception
 echo "Caught PDO exception";
} catch (Exception $e) {
 // Handle all other exceptions
 echo "Caught generic exception";
} finally {
 // Always do this
 echo "Always do this";
}

In Example 5-39, the first catch block intercepts PDOException exceptions. All other
exceptions are intercepted by the second catch block. Only one catch block is run for
each caught exception. If PHP does not find an applicable catch block, the exception
continues to bubble upward until the PHP script ultimately terminates with a fatal
error.

Exception Handlers
You may be thinking how am I supposed to catch every possible exception? And that’s a
good question. PHP lets you register a global exception handler to catch otherwise
uncaught exceptions. You should always set a global exception handler. An exception
handler is a final safety net that lets you show an appropriate error message to your
PHP application’s users if you otherwise fail to catch and handle an exception. For my
own PHP applications, I use exception handlers to show debugging information dur‐
ing development and a user-friendly message during production.

An exception handler is anything that is callable. I prefer to use an anonymous func‐
tion, but you can also use a class method. Whatever you choose, it must accept one
argument of class Exception. You register your exception handler with the
set_exception_handler() function like this:

118 | Chapter 5: Good Practices

<?php
set_exception_handler(function (Exception $e) {
 // Handle and log exception
});

I strongly recommend you log exceptions inside your exception
handler. Your logger can alert you when things go wrong, and it
saves exception details for later review.

In some situations, you may need to replace an existing exception handler with your
own exception handler. PHP etiquette suggests you restore the existing exception
handler when your code is finished. You can restore a previous exception handler
with the restore_exception_handler() function (Example 5-40).

Example 5-40. Set global exception handler

<?php
// Register your exception handler
set_exception_handler(function (Exception $e) {
 // Handle and log exception
});

// Your code goes here...

// Restore previous exception handler
restore_exception_handler();

Errors
PHP provides error-reporting functions in addition to exceptions. This confuses
many PHP developers. PHP can trigger different types of errors, including fatal
errors, runtime errors, compile-time errors, startup errors, and (more rarely) user-
triggered errors. You’ll most often encounter PHP errors caused by syntax mistakes
or uncaught exceptions.

The difference between errors and exceptions is subtle. Errors are often triggered
when a PHP script cannot fundamentally run as expected for whatever reason (e.g.,
there is a syntax mistake). It is also possible to trigger your own errors with the trig
ger_error() function and handle them with a custom error handler, but it is better
to use exceptions when writing userland code. Unlike errors, PHP exceptions can be
thrown and caught at any level of your PHP application. Exceptions provide more
contextual information than PHP errors. And you can extend the topmost Exception
class with your own custom exception subclasses. Exceptions and a good logger like

Errors and Exceptions | 119

Monolog are a far more versatile solution than PHP errors. However, modern PHP
developers must anticipate and handle both PHP errors and PHP exceptions.

You can instruct PHP which errors to report, and which to ignore, with the
error_reporting() function or the error_reporting directive in your php.ini file.
Both accept named E_* constants that determine which errors are reported and
which are ignored.

Learn more about PHP error reporting at http://php.net/manual/
function.error-reporting.php.

PHP error reporting can be as sensitive or stoic as you tell it to be. In development, I
prefer PHP to obnoxiously display and log all error messages. In production, I
instruct PHP to log most error messages but not display them. Whatever you do, you
should always follow these four rules:

• Always turn on error reporting.
• Display errors during development.
• Do not display errors during production.
• Log errors during development and production.

Here are my error-reporting php.ini settings for development:

; Display errors
display_startup_errors = On
display_errors = On

; Report all errors
error_reporting = -1

; Turn on error logging
log_errors = On

Here are my error-reporting php.ini settings for production:

; DO NOT display errors
display_startup_errors = Off
display_errors = Off

; Report all errors EXCEPT notices
error_reporting = E_ALL & ~E_NOTICE

; Turn on error logging
log_errors = On

120 | Chapter 5: Good Practices

http://php.net/manual/function.error-reporting.php
http://php.net/manual/function.error-reporting.php

The main difference is that I display errors in my PHP script output during develop‐
ment. I do not display errors in my PHP script output in production. However, I log
errors in both environments. If I have a bug in my production PHP application (and
this never happens…cough), I can review my PHP log file for details.

Error Handlers
Just as you can with exception handlers, you can set a global error handler to inter‐
cept and handle PHP errors with your own logic. The error handler lets you fail
gracefully by cleaning up loose ends before terminating the PHP script.

An error handler, like an exception handler, is anything that is callable (e.g., a func‐
tion or class method). It is your responsibility to die() or exit() inside of your error
handler. If you don’t manually terminate the PHP script inside your error handler, the
PHP script will continue executing from where the error occurred. You register your
global error handler with the set_error_handler(), and you pass it an argument
that is callable:

<?php
set_error_handler(function ($errno, $errstr, $errfile, $errline) {
 // Handle error
});

Your error-handler callable receives five arguments:

$errno

The error level (maps to a PHP E_* constant).

$errstr

The error message.

$errfile

The filename in which the error occurred.

$errline

The file line number on which the error occurred.

$errcontext

An array that points to the active symbol table when the error occurred. This is
optional and is only useful for advanced debugging purposes. I usually ignore
this argument.

There’s one important caveat that you absolutely must know when using a custom
error handler. PHP will send all errors to your error handler, even those that are
excluded by your current error-reporting setting. It is your responsibility to inspect
each error code (the first argument) and act appropriately. You can instruct your
error handler to only respond to a subset of error types with a second argument to

Errors and Exceptions | 121

the set_error_handler() function; this argument is a bitwise mask of E_* constants
(e.g., E_ALL | E_STRICT).

This is as good a time as any to segue into a common practice that I and many other
PHP developers use in our PHP applications. I like to convert PHP errors into Error
Exception objects. The ErrorException class is a subclass of Exception, and it
comes built into PHP. This lets me convert PHP errors into exceptions and funnel
them into my existing exception handling workflow.

Not all errors can be converted into exceptions! These errors
include E_ERROR, E_PARSE, E_CORE_ERROR, E_CORE_WARNING, E_COM
PILE_ERROR, E_COMPILE_WARNING, and most of E_STRICT.

Converting PHP errors is a bit tricky, and we must be careful to convert only the
errors that satisfy the error_reporting setting in our php.ini file. Here’s an example
error-handler function that converts PHP errors into ErrorException objects:

<?php
set_error_handler(function ($errno, $errstr, $errfile, $errline) {
 if (!(error_reporting() & $errno)) {
 // Error is not specified in the error_reporting
 // setting, so we ignore it.
 return;
 }

 throw new \ErrorException($errstr, $errno, 0, $errfile, $errline);
});

This error-handler function converts the appropriate PHP errors into ErrorExcep
tion objects and throws them into our existing exception-handling system. It is con‐
sidered good etiquette to restore the previous error handler (if any) after your own
code is done. You can restore the previous handler with the restore_error_han
dler() function (Example 5-41).

Example 5-41. Set global error handler

<?php
// Register error handler
set_error_handler(function ($errno, $errstr, $errfile, $errline) {
 if (!(error_reporting() & $errno)) {
 // Error is not specified in the error_reporting
 // setting, so we ignore it.
 return;
 }

 throw new ErrorException($errstr, $errno, 0, $errfile, $errline);

122 | Chapter 5: Good Practices

});

// Your code goes here...

// Restore previous error handler
restore_error_handler();

Errors and Exceptions During Development
We know we should display errors during development. But PHP’s default error mes‐
sages are ugly and often injected into the normal PHP script output, resulting in a
hard-to-read mess. Use Whoops instead. Whoops is a modern PHP component that
provides a well-designed, easy-to-read diagnostics page for PHP errors and excep‐
tions. Whoops, created and maintained by Filipe Dobreira and Denis Sokolov, looks
like Figure 5-1.

Figure 5-1. Whoops screenshot

The Whoops diagnostic screen is light years better than the default PHP error and
exception output.

Whoops is easy to implement, too. Update your composer.json file as shown below,
and run either composer install or composer update:

{
 "require": {
 "filp/whoops": "~1.0"
 }
}

Next, register the Whoops error and exception handlers in your PHP application’s
bootstrap file, as shown in Example 5-42.

Errors and Exceptions | 123

https://github.com/filp/whoops
https://github.com/filp
https://github.com/denis-sokolov

Example 5-42. Register the Whoops handler

<?php
// Use composer autoloader
require 'path/to/vendor/autoload.php';

// Setup Whoops error and exception handlers
$whoops = new \Whoops\Run;
$whoops->pushHandler(new \Whoops\Handler\PrettyPageHandler);
$whoops->register();

That’s it. When your script triggers a PHP error or when your application does not
catch an exception, you’ll see the Whoops diagnostic screen.

Example 5-42 uses the Whoops PrettyPageHandler handler, which creates the diag‐
nostic screen shown in Figure 5-1. There are other Whoops handlers, too, including a
plain-text handler, a callback handler, a JSON response handler, an XML response
handler, and (if your pointy-haired boss likes to say the word enterprise a lot) a SOAP
response handler. I use Whoops during development for each application I develop.

Production
We know we should log errors in production. PHP provides the error_log() func‐
tion to write messages to the filesystem, to syslog, or into an email. But there’s a bet‐
ter option, and it’s called Monolog. Monolog is a very good PHP component that
specializes in one thing—logging. It’s easy to integrate into your PHP applications
with Composer.

First, require the monolog/monolog package in your composer.json file:

{
 "require": {
 "monolog/monolog": "~1.11"
 }
}

Next, install the component with either composer install or composer update, and
add the code from Example 5-43 to the top of your PHP application’s bootstrap file.

Example 5-43. Use Monolog for development logging

<?php
// Use Composer autoloader
require 'path/to/vendor/autoload.php';

// Import Monolog namespaces
use Monolog\Logger;
use Monolog\Handler\StreamHandler;

124 | Chapter 5: Good Practices

https://github.com/Seldaek/monolog

// Setup Monolog logger
$log = new Logger('my-app-name');
$log->pushHandler(new StreamHandler('path/to/your.log', Logger::WARNING));

That’s it. You now have a Monolog logger that will write all logged messages of type
Logger::WARNING or higher to the path/to/your.log file.

Monolog is very extensible. You can define multiple handlers that only handle spe‐
cific log levels. For example, we can push a second Monolog handler that emails an
administrator for critical, alert, or emergency errors. We’ll need the SwiftMailer PHP
component, so let’s add that to the composer.json file and run composer update:

{
 "require": {
 "monolog/monolog": "~1.11",
 "swiftmailer/swiftmailer": "~5.3"
 }
}

Next, we’ll modify our code and add a new Monolog handler that accepts a Swift‐
Mailer instance to send email messages (Example 5-44).

Example 5-44. Use Monolog for production logging

<?php
// Use Composer autoloader
require 'vendor/autoload.php';

// Import Monolog namespaces
use Monolog\Logger;
use Monolog\Handler\StreamHandler;
use Monolog\Handler\SwiftMailerHandler;

date_default_timezone_set('America/New_York');

// Setup Monolog and basic handler
$log = new Logger('my-app-name');
$log->pushHandler(new StreamHandler('logs/production.log', Logger::WARNING));

// Add SwiftMailer handler for critical errors
$transport = \Swift_SmtpTransport::newInstance('smtp.example.com', 587)
 ->setUsername('USERNAME')
 ->setPassword('PASSWORD');
$mailer = \Swift_Mailer::newInstance($transport);
$message = \Swift_Message::newInstance()
 ->setSubject('Website error!')
 ->setFrom(array('daemon@example.com' => 'John Doe'))
 ->setTo(array('admin@example.com'));
$log->pushHandler(new SwiftMailerHandler($mailer, $message, Logger::CRITICAL));

Errors and Exceptions | 125

// Use logger
$log->critical('The server is on fire!');

Now when a critical, alert, or emergency message is logged, Monolog emails the
logged message using the SwiftMailer $mailer and $message objects. The email body
is the logged message text.

126 | Chapter 5: Good Practices

PART III

Deployment, Testing, and Tuning

CHAPTER 6

Hosting

So you have a PHP application. Congratulations! However, it doesn’t do anyone any
good unless your users can, you know, use it. You need to host your application on a
server and make it accessible to its intended audience. Generally speaking, there are
four ways to host PHP applications: shared servers, virtual private servers, dedicated
servers, and platforms as a service. Each has its unique benefits and is suitable for dif‐
ferent types of applications and budgets.

There are also many web hosting companies, and it can be overwhelming if you are
brand new to the web hosting landscape. Some hosting companies provide only
shared servers. Other companies provide a mix of shared servers, virtual private
servers, and dedicated servers. This chapter will focus less on the companies them‐
selves and more on hosting options.

Shared Server
A shared server is the most affordable hosting option and costs $1–10/month. You
should avoid shared hosting plans. This is not a commentary on shared hosting com‐
panies’ quality of service or customer support. There are many good shared hosting
companies. Simply put, shared hosting options are not developer-friendly.

A shared server, as its name implies, means that you share server resources with other
people. If you purchase a shared hosting plan, your hosting account lives on the same
physical machine as many other customers’. If your particular machine has 2 Gb of
memory, your PHP application might receive only a fraction of that memory,
depending on how many other customer accounts live on the same machine. If
another account on the same machine runs a poorly coded script, it can negatively
affect your own application. Some shared hosting companies oversell shared servers,

129

and your PHP application constantly battles for system resources on a crowded
machine.

Shared servers are also very difficult to customize. For example, your application may
need Memcached or Redis for a fast, in-memory cache. You may want to install Elas‐
ticsearch to add search functionality to your application. Unfortunately, shared server
software is difficult—if not impossible—to customize. Your applications suffer as a
result.

Shared servers rarely provide remote SSH access. Instead, you’re often handicapped
with (S)FTP access only. This limitation severely restricts your ability to automate
PHP application deployment.

If your budget is super-small or your needs extremely modest, a shared server may be
sufficient. However, if you’re building a business website or a moderately popular
PHP application, you’re better off using a virtual private server, a dedicated server, or
a PaaS.

Virtual Private Server
A virtual private server (VPS) looks, feels, and acts like a bare-metal server. But it’s
not a bare-metal server. A VPS is a collection of system resources that are distributed
across one or many physical machines. A VPS still has its own filesystem, root user,
system processes, and IP address. A VPS is allocated a specific amount of memory,
CPU, and bandwidth—and they’re all yours.

VPSs provide more system resources than a shared server. A VPS provides root SSH
access. And a VPS does not limit what software you can install. Great power, though,
comes with great responsibility. VPSs give you root access to a virgin operating sys‐
tem. It is your responsibility to configure and secure the operating system for your
PHP application. VPSs are ideal for most PHP applications. They provide sufficient
system resources (e.g., CPU, memory, and disk space) that scale up or down on
demand. A VPS costs $10–100/month based on the amount of system resources
needed by your PHP application. If your PHP application becomes super-popular
(hundreds of thousands of visitors a month) and a VPS becomes too costly, you
might consider upgrading to a dedicated server.

I almost always prefer VPSs for their balance of cost, features, and
flexibility. Linode, my favorite hosting company, provides VPS and
dedicated hosting plans. Linode isn’t the cheapest option, but my
personal experience shows Linode is fast and stable, and it comes
with a vast treasure of helpful tutorials.

130 | Chapter 6: Hosting

http://memcached.org
http://redis.io
http://www.elasticsearch.org
http://www.elasticsearch.org
https://linode.com

Dedicated Server
A dedicated server is a rack-mounted machine that your hosting company installs,
runs, and maintains on your behalf. You configure dedicated servers to your exact
specifications. Dedicated servers are real machines that must be transported,
installed, and monitored. They cannot be set up and configured as quickly as VPSs.
That being said, dedicated servers provide the ultimate performance for demanding
PHP applications.

Dedicated servers act much like VPSs. You get root SSH access to a virgin operating
system, and you must secure and configure the operating system for your PHP appli‐
cation. The benefit of a dedicated server is cost-effectiveness. Eventually a VPS
becomes too costly as you consume more system resources. You save money by
investing in your own infrastructure.

A dedicated server costs hundreds of dollars per month depending on the server
specifications. It can be unmanaged (i.e., you manage the server yourself) or man‐
aged (i.e., you pay extra for your hosting company to manage the server).

PaaS
Platforms as a service (PaaS) are a quick way to launch your PHP application, and—
unlike with a virtual private or dedicated server—you don’t have to manage a PaaS.
All you have to do is log into your PaaS provider’s control panel and click a few but‐
tons. Some PaaS providers have a command-line or HTTP API with which you can
deploy and manage your hosted PHP applications. Popular PHP PaaS providers
include:

• AppFog
• AWS Elastic Beanstalk
• Engine Yard
• Fortrabbit
• Google App Engine
• Heroku
• Microsoft Azure
• Pagoda Box
• Red Hat OpenShift
• Zend Developer Cloud

PaaS pricing varies by provider but is similar to virtual private servers: $10–100/
month. You pay for the system resources allocated to your PHP application. System

Dedicated Server | 131

https://appfog.com/
http://aws.amazon.com/elasticbeanstalk/
https://www.engineyard.com/products/cloud
http://fortrabbit.com/
http://bit.ly/g-app-engine
https://devcenter.heroku.com/categories/php
http://www.windowsazure.com/
https://pagodabox.com/
http://openshift.com/
http://bit.ly/z-dev-cloud

resources can be scaled up or down on demand. I recommend PaaS hosting plans for
developers who do not want to manage their own servers.

Choose a Hosting Plan
Choose only what you need when you need it. You can always scale your hosting
infrastructure up or down when necessary. For small PHP applications or prototypes,
a PaaS provider like Engine Yard or Heroku is the best and quickest solution. If you
prefer more control over your server configuration, get a VPS. If your application
becomes super-popular and your VPS is buckling beneath the weight of millions of
visitors (congratulations, by the way!), get a dedicated server. Whichever hosting
option you choose, make sure it provides the latest stable PHP version and extensions
required by your PHP application.

132 | Chapter 6: Hosting

CHAPTER 7

Provisioning

After you choose a host for your application, it’s time to configure and provision the
server for your PHP application. I’ll be honest—provisioning a server is an art, not a
science. How you provision your server depends entirely on your application’s needs.

If you use a PaaS, your server infrastructure is managed by the
PaaS provider. All you have to do is follow the provider’s instruc‐
tions to move your PHP application onto their platform, and you’re
ready to go.

If you don’t use a PaaS, you must provision either a VPS or dedicated server to run
your PHP application. Provisioning a server is not as hard as it sounds (stop laugh‐
ing), but it does require familiarity with the command line. If the command line is
alien to you, you’re better off with a PaaS like Engine Yard or Heroku.

I don’t consider myself a system administrator. However, basic system adminstration
is an incredibly valuable skill for application developers that enables more flexible
and robust application development. In this chapter, I’ll share my system administra‐
tion knowledge so you can feel comfortable opening a terminal to provision a server
for your PHP application. Afterward, I’ll suggest a few additional resources for you to
continue improving your system administration skills.

In this chapter, I assume you know how to edit a text file using a
command-line editor like nano or vim (these are available on most
Linux distributions). Otherwise, you’ll need an alternative method
of accessing and editing files on your server.

133

http://www.nano-editor.org
http://www.vim.org

Our Goal
First, we need to acquire a virtual private or dedicated server. Next, we need to install
a web server to receive HTTP requests. Finally, we need to set up and manage a group
of PHP processes to handle PHP requests; these processes must communicate with
our web server.

Several years ago, it was common practice to install the Apache web server and the
Apache mod_php module. The Apache web server spawns a unique child process to
handle each HTTP request. The Apache mod_php module embeds a unique PHP
interpreter inside each spawned child process—even processes that serve only static
assets like JavaScript, images, or stylesheets. This is a lot of overhead that wastes sys‐
tem resources. I see fewer and fewer PHP developers use Apache nowadays because
there are more efficient solutions.

Today, we use the nginx web server, which sits in front of (and forwards PHP requests
to) a collection of PHP-FPM processes. That’s the solution I’ll demonstrate in this
chapter.

Server Setup
First, let’s set up a virtual private server (VPS). I absolutely adore Linode. It isn’t the
cheapest VPS provider, but it’s one of the most reliable. Head over to Linode’s website
(or your preferred vendor) and purchase a new VPS. Your vendor will ask you to
choose a Linux distribution and a root password for your new server.

Many VPS providers, like Linode and Digital Ocean, bill by the
hour. This means you can fire up and play with a VPS at virtually
zero cost.

First Login
The first thing you should do is log in to your new server. Let’s do that now. Open a
terminal on your local machine and ssh into your server. Be sure you swap in your
own machine’s IP address:

ssh root@123.456.78.90

You may be asked to confirm the authenticity of your new server. Type yes and press
Enter:

The authenticity of host '123.456.78.90 (123.456.78.90)' can't be established.
RSA key fingerprint is 21:eb:37:f3:a5:d3:c0:77:47:c4:15:3d:3c:dc:3c:d1.
Are you sure you want to continue connecting (yes/no)?

134 | Chapter 7: Provisioning

http://nginx.org/
http://linode.com/
http://linode.com/
https://www.digitalocean.com

Next, you’ll be prompted for the root user’s password. Type the password and press
Enter:

root@123.456.78.90's password:

You are now logged into your new server!

Software Updates
The very next thing you should do is update your operating system’s software with
these commands.

Ubuntu
apt-get update;
apt-get upgrade;

CentOS
yum update

These commands spit out a lot of information as software updates for your operating
system are downloaded and applied. This is an important first step because it ensures
you have the latest updates and security fixes for your operating system’s default soft‐
ware.

Nonroot User
Your new server is not secure. Here are a few good practices to harden your new serv‐
er’s security.

Create a nonroot user. You should log in to your server as this nonroot user in the
future. The root user has unlimited power on your server. It is God. It can run any
command without question. You should make it as difficult as possible to access your
server as the root user.

Ubuntu

Create a new nonroot user named deploy with the command in Example 7-1. Enter a
user password when prompted, and follow the remaining on-screen instructions.

Example 7-1. Create nonroot user on Ubuntu

adduser deploy

Next, assign the deploy user to the sudo group with this command:

usermod -a -G sudo deploy

This gives the deploy user sudo privileges (i.e., it can perform privileged tasks with
password authentication).

Server Setup | 135

CentOS

Create a new nonroot user named deploy with this command:

adduser deploy

Give the deploy user a password with this command. Enter and confirm the new
password when prompted:

passwd deploy

Next, assign the deploy user to the wheel group with this command:

usermod -a -G wheel deploy

This gives the deploy user sudo privileges (i.e., it can perform privileged tasks with
password authentication).

SSH Key-Pair Authentication
On your local machine, you can log into your new server as the nonroot deploy user
like this:

ssh deploy@123.456.78.90

You’ll be prompted for the deploy user’s password, and then you’ll be logged in to the
server. We can make the login process more secure by disabling password authentica‐
tion. Password authentication is vulnerable to brute-force attacks in which bad guys
try to guess your password over and over in quick succession. Instead, we’ll use SSH
key-pair authentication when we ssh into our server.

Key-pair authentication is a complex subject. In basic terms, you create a pair of
“keys” on your local machine. One key is private (this stays on your local machine),
and one key is public (this goes on the remote server). They are called a key pair
because messages encrypted with the public key can be decrypted only by the related
private key.

When you log in to the remote machine using SSH key-pair authentication, the
remote machine creates a random message, encrypts it with your public key, and
sends it to your local machine. Your local machine decrypts the message with your
private key and returns the decrypted message to the remote server. The remote
server then validates the decrypted message and grants you access to the server. This
is a dramatic simplification, but you get the point.

If you log in to your remote server from many different computers, you probably do
not want to use SSH key-pair authentication. This would require you to generate
public/private SSH key pairs for each local computer and copy each key pair’s public
key to your remote server. In this case, it’s probably preferable to continue using pass‐
word authentication with a secure password. However, if you are only accessing your
remote server from a single local computer (as many developers often do), SSH key-

136 | Chapter 7: Provisioning

pair authentication is the way to go. You can create an SSH key-pair on your local
machine with this command:

ssh-keygen

Follow the subsequent on-screen instructions and enter the requested information
when prompted. This command creates two files on your local machine: ~/.ssh/
id_rsa.pub (your public key) and ~/.ssh/id_rsa (your private key). The private key
should stay on your local computer and remain a secret. Your public key, however,
must be copied onto your new server. We can copy the public key with the scp
(secure copy) command:

scp ~/.ssh/id_rsa.pub deploy@123.456.78.90:

Be sure you include the trailing : character! This command uploads your public key
to the deploy user’s home directory on your remote server. Next, log in to your
remote server as the deploy user. After you log in to your remote server, make sure
the ~/.ssh directory exists. If it does not exist, create the ~/.ssh directory with this
command:

mkdir ~/.ssh

Next, create the ~/.ssh/authorized_keys file with this command:

touch ~/.ssh/authorized_keys

This file will contain a list of public keys that are allowed to log into this remote
server. Execute this command to append your recently uploaded public key to the
~/.ssh/authorized_keys file:

cat ~/id_rsa.pub >> ~/.ssh/authorized_keys

Finally, we need to modify a few directory and file permissions so that only the
deploy user can access its own ~/.ssh directory and read its own ~/.ssh/author‐
ized_keys file. Assign these permissions with these commands:

chown -R deploy:deploy ~/.ssh;
chmod 700 ~/.ssh;
chmod 600 ~/.ssh/authorized_keys;

We’re done! On your local machine, you should now be able to ssh into the remote
server without entering a password.

You can only ssh into your remote server without a password from
the local machine that has your private key!

Server Setup | 137

Disable Passwords and Root Login
Let’s make the remote server even more secure. We’ll disable password authentication
for all users, and we’ll prevent the root user from logging in—period. Remember, the
root user can do anything, so we want to make it as difficult as possible to access our
server as the root user.

Log in to the remote server as the deploy user and open the /etc/ssh/sshd_config file
in your preferred text editor. The is the SSH server software’s configuration file. Find
the PasswordAuthentication setting and change its value to no; uncomment this set‐
ting if necessary. Find the PermitRootLogin setting and change its value to no;
uncomment this setting if necessary. Save your changes and restart the SSH server
with this command to apply your changes:

Ubuntu
sudo service ssh restart

CentOS
sudo systemctl restart sshd.service

You’re done. You’ve secured your server, and it’s time to install additional software to
run your PHP application. From this point forward, all instructions should be com‐
pleted on the remote server as the nonroot deploy user.

Server security is an ongoing task that should be constantly moni‐
tored. I recommend you implement a firewall in addition to my
previous instructions. Ubuntu users can use UFW. CentOS users
can use iptables.

PHP-FPM
PHP-FPM (PHP FastCGI Process Manager) is software that manages a pool of
related PHP processes that receive and handle requests from a web server like nginx.
The PHP-FPM software creates one master process (usually run by the operating sys‐
tem’s root user) that controls how and when HTTP requests are forwarded to one or
more child processes. The PHP-FPM master process also controls when child PHP
processes are created (to answer additional web application traffic) and destroyed (if
they are too old or no longer necessary). Each PHP-FPM pool process lives longer
than a single HTTP request, and it can handle 10, 50, 100, 500, or more HTTP
requests.

Install
The simplest way to install PHP-FPM is with your operating sytem’s native package
manager, as demonstrated by the following commands.

138 | Chapter 7: Provisioning

https://help.ubuntu.com/community/UFW
http://wiki.centos.org/HowTos/Network/IPTables
http://php.net/manual/en/install.fpm.php

See Appendix A for a detailed PHP-FPM installation guide.

Ubuntu
sudo apt-get install python-software-properties;
sudo add-apt-repository ppa:ondrej/php5-5.6;
sudo apt-get update;
sudo apt-get install php5-fpm php5-cli php5-curl \
 php5-gd php5-json php5-mcrypt php5-mysqlnd;

CentOS
sudo rpm -Uvh \
 http://dl.fedoraproject.org/pub/epel/7/x86_64/e/epel-release-7-5.noarch.rpm;
sudo rpm -Uvh \
 http://rpms.famillecollet.com/enterprise/remi-release-7.rpm;
sudo yum -y --enablerepo=epel,remi,remi-php56 install php-fpm php-cli php-gd \
 php-mbstring php-mcrypt php-mysqlnd php-opcache php-pdo php-devel;

If the EPEL rpm installation fails, open a web browser and navigate
to http://dl.fedoraproject.org/pub/epel/7/x86_64/e/. Look for an
updated EPEL release version and use that.

Global Configuration
On Ubuntu, the primary PHP-FPM cofiguration file is /etc/php5/fpm/php-fpm.conf.
On CentOS, the primary PHP-FPM configuration file is /etc/php-fpm.conf. Open this
file in your preferred text editor.

PHP-FPM configuration files use the INI file format. Learn more
about the INI format on Wikipedia.

These are the most important global PHP-FPM settings that I recommend you
change from their default values. These two settings might be commented out by
default; uncomment them if necessary. These settings prompt the master PHP-FPM
process to restart if a specific number of its child processes fail within a specific inter‐
val of time. These settings are a basic safety net for your PHP-FPM processes that can
resolve simple issues. They are not a solution to more fundamental problems caused
by bad PHP code.

PHP-FPM | 139

http://dl.fedoraproject.org/pub/epel/7/x86_64/e/
https://en.wikipedia.org/wiki/INI_file

emergency_restart_threshold = 10

The maximum number of PHP-FPM child processes that can fail within a given
time interval until the master PHP-FPM process gracefully restarts

emergency_restart_interval = 1m

The length of time that governs the emergency_restart_threshold setting

Read more about PHP-FPM global configuration at http://php.net/
manual/en/install.fpm.configuration.php.

Pool Configuration
Elsewhere in the PHP-FPM configuration file is a section named Pool Definitions.
This section contains configuration settings for each PHP-FPM pool. A PHP-FPM
pool is a collection of related PHP child processes. One PHP application typically has
its own PHP-FPM pool.

On Ubuntu, the Pool Definitions section contains this one line:

include=/etc/php5/fpm/pool.d/*.conf

CentOS includes the pool definition files at the top of the primary PHP-FPM config‐
uration file with this line:

include=/etc/php-fpm.d/*.conf

This line prompts PHP-FPM to load individual pool definition files located in
the /etc/php5/fpm/pool.d/ directory (for Ubuntu) or the /etc/php-fpm.d/ directory (for
CentOS). Navigate into this directory, and you should see one file named www.conf.
This is the configuration file for the default PHP-FPM pool named www. Open this file
in your preferred text editor.

Each PHP-FPM pool configuration begins with a [character, the
pool name, and a] character. The default PHP-FPM pool configu‐
ration, for example, begins with [www].

Each PHP-FPM pool runs as the operating system user and group that you specify. I
prefer to run each PHP-FPM pool as a unique nonroot user to help me identify each
PHP application’s PHP-FPM processes on the command line with the top or ps aux
commands. This is a good habit, too, because each PHP-FPM pool’s processes are
inherently sandboxed by the permissions available to their operating system user and
group.

140 | Chapter 7: Provisioning

http://php.net/manual/en/install.fpm.configuration.php
http://php.net/manual/en/install.fpm.configuration.php

We’ll configure the default www PHP-FPM pool to run as the deploy user and group.
If you haven’t already, open the www PHP-FPM pool configuration file in your prefer‐
red text editor. Here are the settings I recommend you change from their default
values:

user = deploy

The system user that owns this PHP-FPM pool’s child processes. Set this to your
PHP application’s nonroot operating system user name.

group = deploy

The system group that owns this PHP-FPM pool’s child processes. Set this to
your PHP application’s nonroot operating system group name.

listen = 127.0.0.1:9000

The IP address and port number on which this PHP-FPM pool listens for and
accepts inbound requests from nginx. The value 127.0.0.1:9000 instructs this
specific PHP-FPM pool to listen for incoming connections on local port 9000. I
use port 9000, but you can use any nonprivileged port number (any port number
greater than 1024) that is not already in use by another system process. We’ll
revisit this setting when we configure our nginx virtual host.

listen.allowed_clients = 127.0.0.1

The IP address(es) that can send requests to this PHP-FPM pool. For security
reasons, I set this to 127.0.0.1. This means that only the current machine can
forward requests to this PHP-FPM pool. This setting might be commented out
by default. Uncomment this setting if necessary.

pm.max_children = 51

This value sets the total number of PHP-FPM pool processes that can exist at any
given time. There is no correct value for this setting. You should test your PHP
application, determine how much memory each individual PHP process uses,
and set this to the total number of PHP processes that your machine’s available
memory can accommodate. Most small to medium-sized PHP applications often
use between 5 MB and 15 MB of memory for each individual PHP process (your
mileage may vary). Assuming we are on a machine with 512 MB of memory
available to this PHP-FPM pool, we can set this value to 512MB total / 10MB
per process, or 51 processes.

pm.start_servers = 3

The number of PHP-FPM pool processes that are available immediately when
PHP-FPM starts. Again, there is no correct value for this setting. For most small
or medium-sized PHP applications, I recommend a value of 2 or 3. This ensures
that your PHP application’s initial HTTP requests don’t have to wait for PHP-
FPM to initialize PHP-FPM pool processes. Two or three processes are already
ready and waiting.

PHP-FPM | 141

pm.min_spare_servers = 2

The smallest number of PHP-FPM pool processes that exist when your PHP
application is idle. This will typically be in the same ballpark as your
pm.start_servers setting, and it ensures that new HTTP requests don’t have to
wait for PHP-FPM to initialize new pool processes to handle new requests.

pm.max_spare_servers = 4

The largest number of PHP-FPM pool processes that exist when your PHP appli‐
cation is idle. This will typically be a bit more than your pm.start_servers set‐
ting, and it ensures that new HTTP requests don’t have to wait for PHP-FPM to
initialize new pool processes to handle new requests.

pm.max_requests = 1000

The maximum number of HTTP requests that each PHP-FPM pool process han‐
dles before being recycled. This setting helps us avoid accumulating memory
leaks caused by poorly coded PHP extensions or libraries. I recommend a value
of 1000, but you should tweak this based on your own application’s needs.

slowlog = /path/to/slowlog.log

The absolute filesystem path to a log file that records information about HTTP
requests that take longer than {n} number of seconds to process. This is helpful
for identifying and debugging bottlenecks in your PHP applications. Bear in
mind, this PHP-FPM pool’s user or group must have permission to write to this
file. The value /path/to/slowlog.log is an example; replace this value with your
own file path.

request_slowlog_timeout = 5s

The length of time after which the current HTTP request’s backtrace is dumped
to the log file specified by the slowlog setting. The value you choose depends on
what you consider to be a slow request. A value of 5s is a reasonable value to start
with.

After you edit and save the PHP-FPM configuration file, restart the PHP-FPM master
process with this command:

Ubuntu
sudo service php5-fpm restart

CentOS
sudo systemctl restart php-fpm.service

Read more about PHP-FPM pool configuration at http://php.net/
manual/install.fpm.configuration.php.

142 | Chapter 7: Provisioning

http://php.net/manual/install.fpm.configuration.php
http://php.net/manual/install.fpm.configuration.php

nginx
nginx (pronounced in gen ex) is a web server similar to Apache, but it’s much simpler
to configure and often uses less system memory. I don’t have time to dig into nginx in
detail, but I do want to show you how to install nginx on your server and forward
appropriate requests to your PHP-FPM pool.

Install
The simplest way to install nginx is with your operating system’s native package
manager.

Ubuntu
On Ubuntu, install nginx with a PPA. This is an Ubuntu-specific term for a prepack‐
aged archive maintained by the nginx community:

sudo add-apt-repository ppa:nginx/stable;
sudo apt-get update;
sudo apt-get install nginx;

CentOS
On CentOS, install nginx using the same EPEL third-party software repository we
added earlier. The default CentOS software repositories might not have the latest
nginx version:

sudo yum install nginx;
sudo systemctl enable nginx.service;
sudo systemctl start nginx.service;

Virtual Host
Next, we’ll configure an nginx virtual host for our PHP application. A virtual host is a
group of settings that tell nginx our application’s domain name, where the PHP appli‐
cation lives on the filesystem, and how to forward HTTP requests to the PHP-FPM
pool.

First, we must decide where our application lives on the filesystem. The PHP applica‐
tion files must live in a filesystem directory that is readable and writable by the non‐
root deploy user. For this example, I’ll place application files in the /home/deploy/
apps/example.com/current directory. We’ll also need a directory to store application
log files. I’ll place log files in the /home/deploy/apps/logs directory. Use these com‐
mands to create the directories and assign correct permissions:

mkdir -p /home/deploy/apps/example.com/current/public;
mkdir -p /home/deploy/apps/logs;
chmod -R +rx /home/deploy;

nginx | 143

Place your PHP application in the /home/deploy/apps/example.com/current directory.
The nginx virtual host configuration assumes your PHP application has a public/
directory; this is the virtual host document root.

Each nginx virtual host has its own configuration file. If you use Ubuntu, create
the /etc/nginx/sites-available/example.conf configuration file. If you use CentOS, cre‐
ate the /etc/nginx/conf.d/example.conf configuration file. Open the example.conf con‐
figuration file in your preferred text editor.

nginx virtual host settings live inside a server {} block. Here is the complete virtual
host configuration file:

server {
 listen 80;
 server_name example.com;
 index index.php;
 client_max_body_size 50M;
 error_log /home/deploy/apps/logs/example.error.log;
 access_log /home/deploy/apps/logs/example.access.log;
 root /home/deploy/apps/example.com/current/public;

 location / {
 try_files $uri $uri/ /index.php$is_args$args;
 }

 location ~ \.php {
 try_files $uri =404;
 fastcgi_split_path_info ^(.+\.php)(/.+)$;
 include fastcgi_params;
 fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
 fastcgi_param SCRIPT_NAME $fastcgi_script_name;
 fastcgi_index index.php;
 fastcgi_pass 127.0.0.1:9000;
 }
}

Copy and paste this code into the example.conf virtual host configuration file. Make
sure you update the server_name setting and swap the error_log, access_log, and
root paths with appropriate values. Here’s a quick explanation of each virtual host
setting:

listen

The port number on which nginx listens for inbound HTTP requests. In most
cases, this is port 80 for HTTP traffic or port 443 for HTTPS traffic.

server_name

The domain name that identifies this virtual host. Change this to your applica‐
tion’s domain name, and ensure the domain name points at your server’s IP

144 | Chapter 7: Provisioning

address. nginx sends an HTTP request to this virtual host if the request’s Host:
header matches the virtual host’s server_name value.

index

The default files served if none is specified in the HTTP request URI.

client_max_body_size

The maximum HTTP request body size accepted by nginx for this virtual host. If
the request body size exceeds this value, nginx returns a HTTP 4xx response.

error_log

The filesystem path to this virtual host’s error log file.

access_log

The filesystem path to this virtual host’s access log file.

root

The document root directory.

There are also two location blocks. These tell nginx how to handle HTTP requests
that match specific URL patterns. The first location / {} block uses a try_files
directive that looks for real files that match the request URI. If a file is not found, it
looks for a directory that matches the request URI. If a directory is not found, it
rewrites the HTTP request URI to /index.php and appends the query string if avail‐
able. The rewritten URL, or any request whose URI ends with .php, is managed by the
location ~ \.php {} block.

The location ~ \.php {} block forwards HTTP requests to our PHP-FPM pool.
Remember how we set up our PHP-FPM pool to listen for requests on port 9000?
This block forwards PHP requests to port 9000, and the PHP-FPM pool takes over.

There are a few extra lines in the location ~ \.php {} block.
These lines prevent potential remote code execution attacks.

On Ubuntu, we must symlink the virtual host configuration file into the /etc/nginx/
sites-enabled/ directory with this command:

sudo ln -s /etc/nginx/sites-available/example.conf \
 /etc/nginx/sites-enabled/example.conf;

Finally, restart nginx with this command:

Ubuntu
sudo service nginx restart

nginx | 145

http://bit.ly/remote-ex

CentOS
sudo systemctl restart nginx.service

Your PHP application is up and running! There are many ways to configure nginx.
I’ve included only the most essential nginx settings in this chapter because this is a
PHP book, not an nginx book. You can learn more about nginx configuration at any
of these helpful resources:

• http://nginx.org/
• https://github.com/h5bp/server-configs-nginx
• https://serversforhackers.com/editions/2014/03/25/nginx/

Automate Server Provisioning
Server provisioning is a lengthy process. It’s also not a fun process, especially if you
manually provision many servers. Fortunately, there are tools available that help auto‐
mate server provisioning. Some popular server provisioning tools are:

• Puppet
• Chef
• Ansible
• SaltStack

Each tool is different, but they all accomplish the same goal—they automatically pro‐
vision new servers based on your exact specifications. If you are responsible for mul‐
tiple servers, I strongly encourage you to explore provisioning tools, because they
save a ton of time.

Delegate Server Provisioning
There are online services, too, that perform server provisioning on your behalf. An
example service is Forge by Taylor Otwell. I was a Forge beta tester, and it really is a
helpful service. Forge can provision multiple servers on Linode, Digital Ocean, and
other popular VPS providers.

Each server provisioned by Forge is automatically secured using the same security
practices I demonstrated earlier. Forge automatically installs an nginx and PHP-FPM
software stack. Forge also simplifies PHP application deployment, SSL certificate
installation, CRON task creation, and other mundane or confusing system adminis‐
tration tasks. I highly recommend Forge if system administration isn’t your cup of
tea.

146 | Chapter 7: Provisioning

http://nginx.org/
https://github.com/h5bp/server-configs-nginx
https://serversforhackers.com/editions/2014/03/25/nginx/
http://puppetlabs.com/
https://www.getchef.com/chef/
http://www.ansible.com/home
http://www.saltstack.com/
https://forge.laravel.com/

Further Reading
I find system administration fascinating. I don’t want to do it as a full-time job, but I
enjoy tinkering on the command line. The best system administration learning
resource for developers, in my opinion, is Servers for Hackers by Chris Fidao.

What’s Next
In this chapter we discussed how to provision a server to run PHP applications. Next
we’ll talk about how to tune your server to eke out maximum performance for your
PHP application.

Further Reading | 147

https://book.serversforhackers.com/

CHAPTER 8

Tuning

By this point, your PHP application should be running alongside nginx with its own
PHP-FPM process pool. We’re not done yet, though. We should tune PHP’s configu‐
ration with settings appropriate for your application and production server. Default
PHP installations are like an average suit you find at your local department store; they
fit, but they don’t fit well. A tuned PHP installation is a custom tailored suit prepared
with your exact measurements.

Don’t get too excited. PHP tuning is not a universal cure for application performance.
Bad code is still bad code. For example, PHP tuning cannot solve poorly written SQL
queries or unresponsive API calls. However, PHP tuning is a low-hanging fruit that
can improve PHP efficiency and application performance.

The php.ini File
The PHP interpreter is configured and tuned with a file named php.ini. This file can
live in one of several directories on your operating system. If you run PHP with PHP-
FPM, as I demonstrated earlier, you can find the php.ini configuration file at /etc/
php5/fpm/php.ini. Oddly enough, this php.ini file does not control the PHP interpreter
used when you invoke php on the command line. PHP on the command line uses its
own php.ini file often located at /etc/php5/cli/php.ini. If you built PHP from source,
the php.ini location is likely beneath the $PREFIX directory specified when you config‐
ured the PHP source files. I’ll assume you’re running PHP with PHP-FPM as
described, but all of these optimizations are applicable to any php.ini file.

149

Scan your php.ini file for best security practices with the PHP Inis‐
can tool, written by Chris Cornutt.
The php.ini file uses the INI format. You can learn about the INI
format on Wikipedia.

Memory
My first concern when running PHP is how much memory each PHP process con‐
sumes. The memory_limit setting in the php.ini file determines the maximum amount
of system memory that can be used by a single PHP process.

The default value is 128M, and this is probably fine for most small to medium-sized
PHP applications. However, if you are running a tiny PHP application, you can save
system resouces by lowering this value to something like 64M. If you are running a
memory-intensive PHP application (e.g., a Drupal website), you may see improved
performance with a higher value like 512M. The value you choose is dictated by the
amount of available system memory. Figuring out how much memory to allocate to
PHP is more an art than a science. These are the questions I ask myself to determine
my PHP memory limit and the number of PHP-FPM processes I can afford:

What is the total amount of memory I can allocate for PHP?
First, I determine how much system memory I can allocate for PHP. For example,
I may be working with a Linode virtual machine with 2 GB of total memory.
However, other processes (e.g., nginx, MySQL, or memcache) might run on the
same machine and consume memory of their own. I think I can safely set aside
512 MB of memory for PHP.

How much memory, on average, is consumed by a single PHP process?
Next, I determine how much memory, on average, is consumed by a single PHP
process. This requires me to monitor process memory usage. If you live in the
command line, then you can run top to see realtime stats for running processes.
You can also invoke the memory_get_peak_usage() PHP function at the tail end
of a PHP script to output the maximum amount of memory consumed by the
current script. Either way, run the same PHP script several times (to warm
caches) and take the average memory consumption. I often find PHP processes
consume between 5–20 MB of memory (your mileage may vary). If you are
working with file uploads, image data, or a memory-intensive application, this
value will obviously be higher.

How many PHP-FPM processes can I afford?
I have 512 MB of total memory allocated for PHP. I determine that each PHP
process, on average, consumes about 15 MB of memory. I divide the total mem‐
ory by the amount of memory consumed by each PHP process, and I determine I

150 | Chapter 8: Tuning

https://github.com/psecio/iniscan
https://github.com/psecio/iniscan
https://en.wikipedia.org/wiki/INI_file

can afford 34 PHP-FPM processes. This value is an estimate and should be
refined with experimentation.

Do I have enough system resources?
Finally, I ask myself if I believe I have sufficient system resources to run my PHP
application and handle the expected web traffic. If yes, awesome. If no, I need to
upgrade my server with more memory and return to the first question.

Use Apache Bench or Seige to stress-test your PHP applications
under production-like conditions. If your PHP application does
not have sufficient resources, it’s wise to figure this out before you
take your application into production.

Zend OPcache
After I figure out my memory allocation, I configure the PHP Zend OPcache exten‐
sion. This is an opcode cache. What’s an opcode cache? Let’s first examine how a typi‐
cal PHP script is processed for every HTTP request. First, nginx forwards an HTTP
request to PHP-FPM, and PHP-FPM assigns the request to a child PHP process. The
PHP process finds the appropriate PHP scripts, it reads the PHP scripts, it compiles
the PHP scripts into an opcode (or bytecode) format, and it executes the compiled
PHP opcode to generate an HTTP response. The HTTP response is returned to
nginx, and nginx returns the HTTP response to the HTTP client. This is a lot of over‐
head for every HTTP request.

We can speed this up by caching the compiled opcode for each PHP script. Then we
can read and execute precompiled opcode from cache instead of finding, reading, and
compiling PHP scripts for each HTTP request. The Zend OPcache extension is built
into PHP 5.5.0+. Here are my php.ini settings to configure and optimize the Zend
OPcache extension:

opcache.memory_consumption = 64
opcache.interned_strings_buffer = 16
opcache.max_accelerated_files = 4000
opcache.validate_timestamps = 1
opcache.revalidate_freq = 0
opcache.fast_shutdown = 1

opcache.memory_consumption = 64

The amount of memory (in megabytes) allocated for the opcode cache. This
should be large enough to store the compiled opcode for all of your application’s
PHP scripts. If you have a small PHP application with few scripts, this can be a
lower value like 16 MB. If your PHP application is large with many scripts, use a
larger value like 64 MB.

Zend OPcache | 151

http://bit.ly/apache-bench
http://www.joedog.org/siege-home/

opcache.interned_strings_buffer = 16

The amount of memory (in megabytes) used to store interned strings. What the
heck is an interned string? That was my first question, too. The PHP interpreter,
behind the scenes, detects multiple instances of identical strings and stores the
string in memory once and uses pointers whenever the string is used again. This
saves memory. By default, PHP’s string interning is isolated in each PHP process.
This setting lets all PHP-FPM pool processes store their interned strings in a
shared buffer so that interned strings can be referenced across multiple PHP-
FPM pool processes. This saves even more memory. The default value is 4 MB,
but I prefer to bump this to 16 MB.

opcache.max_accelerated_files = 4000

The maximum number of PHP scripts that can be stored in the opcode cache.
You can use any number between 200 and 100000. I use 4000. Make sure this
number is larger than the number of files in your PHP application.

opcache.validate_timestamps = 1

When this setting is enabled, PHP checks PHP scripts for changes on the interval
of time specified by the opcache.revalidate_freq setting. If this setting is dis‐
abled, PHP does not check PHP scripts for changes, and you must clear the
opcode cache manually. I recommend you enable this setting during develop‐
ment and disable this setting during production.

opcache.revalidate_freq = 0

How often (in seconds) PHP checks compiled PHP files for changes. The benefit
of a cache is to avoid recompiling PHP scripts on each request. This setting
determines how long the opcode cache is considered fresh. After this time inter‐
val, PHP checks PHP scripts for changes. If PHP detects a change, PHP recom‐
piles and recaches the script. I use a value of 0 seconds. This value requires PHP
to revalidate PHP files on every request if and only if you enable the opcache.val
idate_timestamps setting. This means PHP revalidates files on every request
during development (a good thing). This setting is moot during production
because the opcache.validate_timestamps setting is disabled anyway.

opcache.fast_shutdown = 1

This prompts the opcache to use a faster shutdown sequence by delegating object
deconstruction and memory release to the Zend Engine memory manager. Doc‐
umentation is lacking for this setting. All you need to know is turn this on.

File Uploads
Does your PHP application accept file uploads? If not, turn off file uploads to
improve application security. If your application does accept file uploads, it’s best to
set a maximum upload filesize that your application accepts. It’s also best to set a

152 | Chapter 8: Tuning

maximum number of uploads that your application accepts at one time. These are the
php.ini settings I use for my own applications:

file_uploads = 1
upload_max_filesize = 10M
max_file_uploads = 3

By default, PHP allows up to 20 uploads in a single request. Each uploaded file can be
up to 2 MB in size. You probably don’t need to allow 20 uploads at once; I only allow
three uploads in a single request, but change this setting to a value that makes sense
for your application.

If my PHP applications accept file uploads, they often need to accept files much larger
than 2 MB. I bump the upload_max_filesize setting to 10M or higher based on each
application’s requirements. Don’t set this to something too large, otherwise your web
server (e.g., nginx) may complain about the HTTP request having too large a body or
timing out.

If you accept very large file uploads, be sure your web server is con‐
figured accordingly. You may need to adjust the cli

ent_max_body_size setting in your nginx virtual host
configuration in addition to your php.ini file.

Max Execution Time
The max_execution_time setting in your php.ini file determines the maximum length
of time that a single PHP process can run before terminating. By default, this is set to
30 seconds. You don’t want PHP processes running for 30 seconds. We want our
applications to be super-fast (measured in milliseconds). I recommend you change
this to 5 seconds:

max_execution_time = 5

You can override this setting on a per-script basis with the
set_time_limit() PHP function.

What if my PHP script needs to run a long time? you ask. It shouldn’t. The longer PHP
runs, the longer your web application visitors must wait for a response. If you have
long-running tasks (e.g., resizing images or generating reports), offload those tasks to
a separate worker process.

Max Execution Time | 153

http://bit.ly/max-body-size
http://bit.ly/max-body-size
http://php.net/manual/function.set-time-limit.php

I use the exec() PHP function to invoke the at bash command.
This lets me fork separate nonblocking processes that do not delay
the current PHP process. If you use the exec() PHP function, it is
your responsibility to escape shell arguments with the escapeshel
larg PHP function.

Assume we need to run a report and generate a PDF file with the results. This task
may take 10 minutes to complete. Surely we don’t want the PHP request to sit around
for 10 minutes. Instead, we create a separate PHP file called create-report.php that will
chug along for 10 minutes and eventually generate our report. However, our web
application will take only milliseconds to spin off a separate background process and
return an HTTP response, like this:

<?php
exec('echo "create-report.php" | at now');
echo 'Report pending...';

The standalone create-report.php script runs in a separate background process; it can
update a database or email the report recipient upon completion. There is absolutely
no reason why the primary PHP script should hold up the user experience for long-
running tasks.

If you find yourself spawning a lot of background processes, you
may be better served with a dedicated job queue. PHP Resque is a
great job queue manager based on the original Resque job queue
manager from GitHub.

Session Handling
PHP’s default session handler can slow down larger applications because it stores ses‐
sion data on disk. This creates unnecessary file I/O that takes time. Instead, offload
session handling to a faster in-memory data store like Memcached or Redis. This has
the added benefit of future scalability. If your session data is stored on disk, this pre‐
vents you from scaling PHP across additional servers. If your session data is, instead,
stored on a central Memcached or Redis data store, it can be accessed from any num‐
ber of distributed PHP-FPM servers.

Install the the PECL Memcached extension to access a Memcached datastore from
PHP. You can now change PHP’s default session store to Memcached by adding these
lines to your php.ini file:

session.save_handler = 'memcached'
session.save_path = '127.0.0.2:11211'

154 | Chapter 8: Tuning

http://php.net/manual/function.escapeshellarg.php
http://php.net/manual/function.escapeshellarg.php
https://github.com/chrisboulton/php-resque
https://github.com/blog/542-introducing-resque
http://memcached.org
http://redis.io
http://pecl.php.net/package/memcached

Output Buffering
Networks are more efficient when sending more data in fewer chunks, rather than
less data in more chunks. In other words, deliver content to your visitor’s web
browser in fewer pieces to reduce the total number of HTTP requests.

This is why you enable PHP output buffering. By default, PHP’s output buffer is
enabled (except on the command line). PHP’s output buffer collects up to 4,096 bytes
before flushing its contents back to the web server. Here are my recommended php.ini
settings:

output_buffering = 4096
implicit_flush = false

If you change the output buffer size, make sure its value is a multi‐
ple of 4 (for 32-bit systems) or 8 (for 64-bit systems).

Realpath Cache
PHP maintains a cache of file paths that are used by your PHP application so it does
not have to continually search the include path each time it includes or requires a file.
This cache is called the realpath cache. If you are running a large PHP application that
uses a lot of separate files (Drupal, Composer components, etc.), you can realize bet‐
ter performance by increasing the size of PHP’s realpath cache.

The default realpath cache size is 16k. It’s not obvious how to figure out the exact size
you need, but here’s a trick you can use. First, bump the realpath cache size to some‐
thing obnoxiously large, like 256k. Then output the actual realpath cache size at the
tail end of a PHP script with print_r(realpath_cache_size());. Change your real‐
path cache size to this actual value. You can set the realpath cache size in your php.ini
file:

realpath_cache_size = 64k

Up Next
We’ve got a server firing on all cylinders, and we’re ready to deploy our PHP applica‐
tion into production. In the next chapter we’ll discuss several strategies to automate
PHP application deployment.

Output Buffering | 155

CHAPTER 9

Deployment

We’ve got a provisioned server running nginx and PHP-FPM. Now we need to deploy
our PHP application to a production server. There are many ways to push code into
production. FTP was a popular way to deploy PHP code back when PHP developers
first started banging rocks together. FTP still works, but today there are safer and
more predictable deployment strategies. This chapter shows you how to use modern
tools to automate deployment in a simple, predictable, and reversible way.

Version Control
I assume you are using version control, right? If you are, good job. If you aren’t, stop
what you are doing and version control your code. I prefer to version control my
code with Git, but other version control software like Mercurial works, too. I use Git
because it’s what I know, and it works seamlessly with popular online repositories like
Bitbucket and GitHub.

Version control is an invaluable tool for PHP application developers because it lets us
track changes to our codebase. We can tag points in time as a release, we can roll back
to a previous state, and we can experiment with new features on separate branches
that do not affect our production code. More important, version control helps us
automate PHP application deployment.

Automate Deployment
It is important that you automate application deployment so that it becomes a simple,
predictable, and reversible process. The last thing you want to worry about is a com‐
plicated deployment process. Complicated deployments are scary, and scary things
are used less often.

157

http://git-scm.com
http://mercurial.selenic.com
https://bitbucket.org
https://github.com

Make It Simple
Instead, make your deployment process a simple one-line command. A simple
deployment process is less scary, and that means you’re more likely to push code to
production.

Make It Predictable
Make your deployment process predictable. A predictable process is even less scary
because you know exactly what it is going to do. It should not have unexpected side
effects. If it runs into an error, it aborts the deployment process and leaves the exist‐
ing codebase in place.

Make It Reversible
Make your deployment process reversible. If you accidentily push bad code into pro‐
duction, it should be a simple one-line command to roll back to the previous stable
codebase. This is your safety net. A reversible deployment process should make you
excited—not afraid—to push code into production. If you screw up, just roll back to
the previous release.

Capistrano
Capistrano is software that automates application deployment in a simple, predicta‐
ble, and reversible way. Capistrano runs on your local machine and talks with remote
servers via SSH. Capistrano was originally written to deploy Ruby applications, but
it’s just as useful for any programming language—including PHP.

How It Works
You install Capistrano on your local workstation. Capistrano deploys your PHP
application to a remote server by issuing SSH commands from your local workstation
to the remote server. Capistrano organizes application deployments in their own
directories on the remote server. Capistrano maintains five or more application
deployment directories in case you must roll back to an earlier release. Capistrano
also creates a current/ directory that is a symlink to the current application deploy‐
ment’s directory. Your production server’s Capistrano-managed directory structure
might look like Example 9-1.

Example 9-1. Example directory structure

/
 home/
 deploy/
 apps/

158 | Chapter 9: Deployment

http://capistranorb.com/

 my_app/
 current/
 releases/
 release1/
 release2/
 release3/
 release4/
 release5/

When you deploy a new application release to production, Capistrano first retrieves
the latest version of your application code from its Git repository. Next, Capistrano
places the application code in a new release directory. Finally, Capistrano symlinks
the current/ directory to the new release directory. When you ask Capistrano to roll
back to a previous release, Capistrano points the current/ directory symlink to a pre‐
vious release directory. Capistrano is an elegant and simple deployment solution that
makes PHP application deployments simple, predictable, and reversible.

Install
Install Capistrano on your local machine. Do not install Capistrano on your remote
servers. You’ll need ruby and gem, too. OS X users already have these. Linux users can
install ruby and gem with their respective package managers. After you install ruby
and gem, install Capistrano with this command:

gem install capistrano

Configure
After you install Capistrano, you must initialize your project for Capistrano. Open a
terminal, navigate to your project’s topmost directory, and run this command:

cap install

This command creates a file named Capfile, a directory named config/, and a direc‐
tory named lib/. Your project’s topmost directory should now have these files and
directories:

Capfile
config/
 deploy/
 production.rb
 staging.rb
 deploy.rb
lib/
 capistrano/
 tasks/

Capistrano | 159

The Capfile file is Capistrano’s central configuration file, and it aggregates the config‐
uration files located in the config/ directory. The config/ directory contains configura‐
tion files for each remote server environment (e.g., testing, staging, or production).

Capsitrano configuration files are written in the Ruby language.
However, they are still easy to edit and understand.

By default, Capistrano assumes you have multiple environments for your application.
For example, you might have separate staging and production environments. Capi‐
strano provides a separate configuration file for each environment in the config/
deploy/ directory. Capistrano also provides the config/deploy.rb configuration file,
which contains settings common to all environments.

In each environment, Capistrano has the notion of server roles. For example, your
production environment may have a front-facing web server (the web role), an appli‐
cation server (the app role), and a database server (the db role). Only the largest appli‐
cations necessitate this architecture. Smaller PHP applications generally use only one
machine that runs the web server (nginx), application server (PHP-FPM), and data‐
base server (MariaDB).

For this demonstration, I’m only going to use Capistrano’s web role and ignore its app
and db roles. Capistrano’s roles let you organize tasks to be executed only on servers
that belong to a given role. This isn’t something we’re going to worry about here.
However, I am going to respect Capistrano’s notion of server environments. This
demonstration will use the production environment, but the following steps are
equally applicable to other environments (e.g., staging or testing).

The config/deploy.rb file
Let’s look at the config/deploy.rb file. This configuration file contains settings com‐
mon to all environments (e.g., staging and production). Most of our Capistrano
configuration settings go in this file. Open the config/deploy.rb file in your preferred
text editor and update these settings:

:application

This is the name of your PHP application. It should contain only letters, num‐
bers, and underscores.

:repo_url

This is your Git repository URL. This URL must point to a Git repository, and
the repository must be accessible from your remote server.

160 | Chapter 9: Deployment

:deploy_to

This is the absolute directory path on your remote server in which your PHP
application is deployed. This would be /home/deploy/apps/my_app as shown in
Example 9-1.

:keep_releases

This is the number of old releases that should be retained in case you want to roll
back your application to an earlier version.

The config/deploy/production.rb file
This file contains settings only for your production environment. This file defines the
production environment roles, and it lists the servers that belong to each role. We’re
only using the web role, and we have only one server that belongs to this role. Let’s use
the server we provisioned in Chapter 7. Update the entire config/deploy/production.rb
file with this content. Make sure you replace the example IP address:

role :web, %w{deploy@123.456.78.90}

Authenticate
Before we deploy our application with Capistrano, we must establish authentication
between our local computer and our remote servers, and between our remote servers
and the Git repository. We already discussed how to set up SSH key-pair authentica‐
tion between our local computer and remote server. You should also establish SSH
key-pair authentication between your remote servers and the Git repository.

Use the same instructions we discussed earlier to generate an SSH public and private
keypair on each remote server. The Git repository should have access to each remote
server’s public key; both GitHub and Bitbucket let you add multiple public SSH keys
to your user account. Ultimately, you must be able to clone the Git repository to your
remote servers without a password.

Prepare the Remote Server
We’re almost ready to deploy our application. First, we need to prepare our remote
server. Log in to your remote server with SSH and create the directory in which we’ll
deploy our PHP application. This directory must be readable and writable by the
deploy user. I like to create a directory for my applications in the deploy user’s home
directory, like this:

/
 home/
 deploy/
 apps/
 my_app/

Capistrano | 161

Virtual host
Capistrano symlinks the current/ directory to the current application release direc‐
tory. Update your web server’s virtual host document root directory so that it points
to Capistrano’s current/ directory. Given this filesystem diagram, your virtual host
document root might become /home/deploy/apps/my_app/current/public/; this
assumes your PHP application contains a public/ directory that serves as the docu‐
ment root. Restart your web server to load your virtual host configuration changes.

Software dependencies
Your remote server doesn’t need Capistrano, but it does need Git. It also needs any
software required to run your PHP application. You can install Git with these com‐
mands:

Ubuntu
sudo apt-get install git;

CentOS
sudo yum install git;

Capistrano Hooks
Capistrano allows us to run our own commands at specific moments (or hooks) dur‐
ing application deployment. Many PHP developers manage application dependencies
with Composer. We can install Composer dependencies during each Capistrano
deployment with a Capistrano hook. Open the config/deploy.rb file in your preferred
text editor and append this Ruby code:

namespace :deploy do
 desc "Build"
 after :updated, :build do
 on roles(:web) do
 within release_path do
 execute :composer, "install --no-dev --quiet"
 end
 end
 end
end

If your project uses the Composer dependency manager, make sure
Composer is installed on your remote servers.

Our application’s dependencies are now installed automatically after each production
deployment. You can read more about Capistrano hooks on the Capistrano website.

162 | Chapter 9: Deployment

http://bit.ly/cap-flow

Deploy Your Application
Now’s the fun part! Make sure you’ve committed and pushed your most recent appli‐
cation code to your Git repository. Then open a terminal on your local computer and
navigate to your application’s topmost directory. If you’ve done everything correctly,
you can deploy your PHP application with this one-line command:

cap production deploy

Roll Back Your Application
In the off chance you deploy bad code to your production environment, you can roll
back to a previous release with this one-line command:

cap production deploy:rollback

Further Reading
I’ve only scratched the surface. Capistrano has many more features that further
streamline your deployment workflow. Capistrano is my favorite deployment tool,
but there are many other tools available, including:

• Deployer
• Magallanes
• Rocketeer

What’s Next
We’ve provisioned a server, and we’ve automated our PHP application deployments
with Capistrano. Next we’ll discuss how to ensure our PHP applications run as
expected. To do this, we’ll use testing and profiling.

Further Reading | 163

http://deployer.in/
http://magephp.com/
http://rocketeer.autopergamene.eu/

CHAPTER 10

Testing

Testing is an important part of PHP application development, but it is often neglec‐
ted. I think many PHP developers don’t test because they consider testing an unnec‐
essary burden that requires too much time for too few benefits. Other developers may
not know how to test, because there are a large number of testing tools and an over‐
whelming learning curve.

In this chapter I hope to dispel these misunderstandings. I want you to feel comforta‐
ble and excited about testing your PHP code. I want you to consider testing an inte‐
gral part of your workflow that happens at the beginning, middle, and end of the
application development process.

Why Do We Test?
We write tests to ensure that our PHP applications work, and continue to work,
according to our expectations. It’s as simple as that. How often have you been afraid
to deploy an application into production? Before I started testing my code, I was ter‐
rified to push a release into production. Would my code work? Would it break? All I
could do was cross my fingers and hope for the best. This is no way to code. It’s scary
and stressful, and it usually ends in frustration. Tests, however, mitigate uncertainty,
and they let us write and deploy code with confidence.

Your pointy-haired boss may argue that there isn’t enough time to write tests. After
all, time is money. This is shortsighted. Installing a testing infrastructure and writing
tests takes time, but this is a wise investment that pays dividends into the future. Tests
help us write code that works well the first time. Tests let us continuously iterate
without breaking old code. We may move forward at a slower pace than if we didn’t
use tests, but we won’t waste countless development hours in the future

165

troubleshooting and refactoring bugs that were overlooked. In the long term, tests
save money, prevent downtime, and inspire confidence.

When Do We Test?
I see many PHP developers write tests as an afterthought. These developers know
testing is important, but they consider tests as something they must do instead of
something they want to do. These developers often push testing to the very end of the
application development process. They bang out a few passing tests to satisfy their
management team and call it a day. This is wrong. Tests should be a foreground con‐
cern before development, during development, and after development.

Before
Install and configure your testing tools before you develop your application. It doesn’t
matter which testing tools you choose. Install them as if they are a vital application
dependency. This makes it physically and mentally easier to test your application dur‐
ing development. This is also a good time to meet with your project manager to
define higher-level application behavior.

During
Write and run tests as you build each piece of your application. Did you just add a
new PHP class? Test it now, because you probably won’t test it later. Testing while you
develop helps you build confident and stable code, and it also helps you quickly find
and refactor new code that breaks existing functionality.

After
You probably won’t anticipate and test all of your application’s behaviors during
development. If you find a bug after your launch your application, write a new test to
ensure that your bug fix works correctly. Tests are not a once-and-done thing. Tests
are continuously modified and improved, just like the application itself. If you update
your application’s code, be sure you also update the affected tests.

What Do We Test?
We test the smallest pieces of our application. A PHP application, on a microcosmic
scale, has PHP classes, methods, and functions. We should test each public class,
method, and function to ensure it behaves as we expect in isolation. If we know each
piece works well on its own, we can be confident it also works well when integrated
into the whole application. These tests are called unit tests.

166 | Chapter 10: Testing

Unfortunately, testing each individual piece does not guarantee it works correctly
with the whole application. This is why we also test our application at a macrocosmic
scale with automated testing tools that verify our application’s higher-level behaviors.
These tests are called functional tests.

How Do We Test?
We know why, when, and what to test. More important, let’s chat about how we test
code. There are several popular ways PHP developers approach testing. Some devel‐
opers prefer unit tests. Some developers prefer test-driven development (TDD). And
other developers prefer behavior-driven development (BDD). These are not mutually
exclusive.

Unit Tests
The most popular approach to PHP application testing is unit testing. As I described
previously, unit tests certify individual classes, methods, and functions in isolation
from the larger application. The de facto standard PHP unit testing framework is
PHPUnit, written by Sebastian Bergmann. Sebastian’s PHPUnit framework adheres to
the xUnit test architecture.

There are alternative PHP unit testing frameworks, like PHPSpec, available for you to
use, too. However, most popular PHP frameworks provide PHPUnit tests. It’s vital
that you know how to read, write, and run PHPUnit tests if you intend to contribute
to or release PHP components. I’ll show you how to install, write, and run PHP unit
tests at the end of this chapter.

Test-Driven Development (TDD)
Test-driven development means you write tests before you write application code.
These tests purposefully fail and describe how your application should behave. As you
build application functionality, your tests will eventually run successfully. TDD helps
you build with a purpose; you know ahead of time what you will build and how it
should work.

This does not meant that you must write all of your application tests before you write
any code. Instead, write a few tests and then build the related functionality. Write
tests and build. Write tests and build. TDD is iterative. Move forward in small sprints
until your application is complete.

Behavior-Driven Development (BDD)
Behavior-driven development means that you write stories that describe how your
application behaves. There are two types of BDD: SpecBDD and StoryBDD.

How Do We Test? | 167

https://phpunit.de/
https://sebastian-bergmann.de/

SpecBDD is a type of unit test that uses a fluid and human-friendly language to
describe your application’s implementation. SpecBDD accomplishes the same goal as
alternative unit testing tools like PHPUnit. Unlike PHPUnit’s xUnit architecture,
SpecBDD tests use human-readable stories to describe behavior. For example, a
PHPUnit test might be named testRenderTemplate(). An equivalent SpecBDD test
might be named itRendersTheTemplate(). The same SpecBDD test might use helper
methods named $this->shouldReturn(), $this->shouldBe(), and $this-

>shouldThrow(). SpecBDD tests use a language that is much easier to read and
understand than alternative xUnit tools. The most popular SpecBDD testing tool is
PHPSpec.

StoryBDD tools use the same human-friendly stories as SpecBDD tests. StoryBDD
tools, however, are more concerned with higher-level behavior than with lower-level
implementation. For example, a StoryBDD test confirms that your code creates and
emails a PDF report. A SpecBDD test, on the other hand, confirms that a specific
PDF generator class method correctly renders a PDF file for a given set of input
parameters. The difference is scope. StoryBDD resembles something a project man‐
ager would write (e.g., “this should generate and email me a report”). A SpecBDD test
resembles something a developer would write (e.g., “this class method should receive
an array of data and write it to this PDF file”). StoryBDD and SpecBDD testing tools
are not mutually exclusive. They are often used together to build a more comprehen‐
sive set of tests. You’ll often sit with your project manager to write generic StoryBDD
tests that define your application’s generic behavior, and then you’ll write SpecBDD
tests when you design and build your application’s implementation. The most popular
StoryBDD testing tool is Behat.

Write StoryBDD tests that describe your business logic and not a
specific implementation. A good StoryBDD test confirms “a shop‐
ping cart total increases when I add a product to the cart.” A bad
StoryBDD test confirms “a shopping cart total increases when I
send an HTTP PUT request to the /cart URL with the body prod
uct_id=1&quantity=2.” The first test is generic and describes only
the high-level business logic. The second test is too specific and
describes a particular implementation.

PHPUnit
Let’s talk about how to install, write, and run PHPUnit tests. It takes a bit of work to
get the infrastructure in place, but it’s dead simple to write and run your PHPUnit
tests afterward. Before we dig too deep into PHPUnit, let’s quickly review some
vocabulary. Your PHPUnit tests are grouped into test cases, and your test cases are
grouped into test suites. PHPUnit runs your test suites with a test runner.

168 | Chapter 10: Testing

http://www.phpspec.net/
http://behat.org/

A test case is a single PHP class that extends the PHPUnit_Framework_TestCase class.
Each test case contains public methods whose names begin with test; these methods
are individual tests that assert specific scenarios to be true. Each assertion can pass or
fail. You want all assertions to pass.

A test case class name must end with Test, and its filename must
end with Test.php. A hypothetical test case class name is FooTest,
and that class lives in a file named FooTest.php.

A test suite is a collection of related test cases. If you are working on a single PHP
component, oftentimes you’ll only ever have a single test suite. If you are testing a
larger PHP application with many different subsystems or components, you may find
it best to organize tests into multiple test suites.

A test runner is exactly what it sounds like. It is a way for PHPUnit to run your test
suites and output the result. The default PHPUnit test runner is the command-line
runner that is invoked with the phpunit command in your terminal application.

Directory Structure
Here’s how I prefer to organize my PHP projects. The topmost project directory has a
src/ directory where I keep my source code. It also has a tests/ directory where I keep
my tests. Here’s an example directory structure:

src/
tests/
 bootstrap.php
composer.json
phpunit.xml
.travis.yml

src/
This directory contains my PHP project’s source code (i.e., PHP classes).

tests/
This directory contains my PHP project’s PHPUnit tests. This directory contains
a bootstrap.php file that is included by PHPUnit before the unit tests are run.

composer.json
This file lists my PHP project’s dependencies managed by Composer, including
the PHPUnit test framework.

phpunit.xml
This file provides configuration details for the PHPUnit test runner.

PHPUnit | 169

.travis.yml
This file provides configuration details for the Travis CI continuous testing web
service.

Look at your favorite PHP component or framework’s source code
on GitHub and you’ll see it uses a similar organization.

Install PHPUnit
First we need to install PHPUnit and the Xdebug profiler. PHPUnit runs our tests.
The Xdebug profiler generates helpful code coverage information. Composer is the
easiest way to install the PHPUnit test framework. Open your terminal application,
navigate to your project’s topmost directory, and run this command:

composer require --dev phpunit/phpunit

This command downloads the PHPUnit test framework into your project’s vendor/
directory, and it updates your project’s composer.json file so that the phpunit/phpunit
package is listed as a project dependency. The phpunit binary is installed in your
project’s vendor/bin/ directory. You can add this directory to your environment path,
or you can reference vendor/bin/phpunit whenever you invoke the PHPUnit com‐
mand line test runner. The PHPUnit framework classes are autoloaded into your
PHP application with your project’s other Composer-managed dependencies.

Install Xdebug
The Xdebug PHP extension is a bit trickier to install. If you installed PHP with your
package manager, you can install Xdebug the same way (Example 10-1).

Example 10-1. How to install Xdebug

Ubuntu
sudo apt-get install php5-xdebug

CentOS
sudo yum -y --enablerepo=epel,remi,remi-php56 install php-xdebug

If you installed PHP from source, you’ll need to install the Xdebug extension with the
pecl command:

pecl install xdebug

Next, update your php.ini configuration file with the path to the compiled Xdebug
extension.

170 | Chapter 10: Testing

You can find your PHP extensions directory with the php-config
--extension-dir or php -i | grep extension_dir commands.

Append this line to your php.ini file using your own PHP extension path:

zend_extension="/PATH/TO/xdebug.so"

Restart PHP and you’re good to go. We’ll discuss the Xdebug profiler in Chapter 11.

Configure PHPUnit
Now let’s configure PHPUnit in our project’s phpunit.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<phpunit bootstrap="tests/bootstrap.php">
 <testsuites>
 <testsuite name="whovian">
 <directory suffix="Test.php">tests</directory>
 </testsuite>
 </testsuites>

 <filter>
 <whitelist>
 <directory>src</directory>
 </whitelist>
 </filter>
</phpunit>

PHPUnit test runner settings are attributes on the <phpunit> XML root element. The
most important setting, in my opinion, is the bootstrap setting; it specifies the path
(relative to the phpunit.xml file) to a PHP file that is included before the PHPUnit test
runner executes our tests. We’ll autoload our application’s Composer dependencies in
the bootstrap.php file so they are available to our PHPUnit tests. The bootstrap.php file
also specifies the path to our test suite (i.e., a directory that contains related test
cases); PHPUnit runs all PHP files in this directory whose file names end with
Test.php. Finally, this configuration file lists the directories included in our code cov‐
erage analysis with the <filter> element. In the previous example XML, the <white
list> element tells PHPUnit to generate code coverage only for code in the src/
directory.

The gist of this configuration file is to specify our PHPUnit settings in one location.
This makes our lives easier locally because we don’t have to specify these settings each
time we use the phpunit command-line runner. This configuration file also lets us
apply the same PHPUnit settings on remote continuous testing servers like Travis CI.
After you update the phpunit.xml configuration file, update the tests/bootstrap.php file
with this code:

PHPUnit | 171

<?php
// Enable Composer autoloader
require dirname(__DIR__) . '/vendor/autoload.php';

Make sure you install your Composer dependencies before running
PHPUnit tests.

The Whovian Class
Before we write unit tests, we need something to test. Here’s a hypothetical PHP class
named Whovian that has a pretty strong opinion about a particular BBC television
show. Place this class definition into the src/Whovian.php file:

<?php
class Whovian
{
 /**
 * @var string
 */
 protected $favoriteDoctor;

 /**
 * Constructor
 * @param string $favoriteDoctor
 */
 public function __construct($favoriteDoctor)
 {
 $this->favoriteDoctor = (string)$favoriteDoctor;
 }

 /**
 * Say
 * @return string
 */
 public function say()
 {
 return 'The best doctor is ' . $this->favoriteDoctor;
 }

 /**
 * Respond to
 * @param string $input
 * @return string
 * @throws \Exception
 */
 public function respondTo($input)
 {
 $input = strtolower($input);

172 | Chapter 10: Testing

 $myDoctor = strtolower($this->favoriteDoctor);

 if (strpos($input, $myDoctor) === false) {
 throw new Exception(
 sprintf(
 'No way! %s is the best doctor ever!',
 $this->favoriteDoctor
)
);
 }

 return 'I agree!';
 }
}

The Whovian class constructor sets the instance’s favorite doctor. The say() method
returns a string with the instance’s favorite doctor. And its respondTo() method
receives a statement from another Whovian instance and responds accordingly.

The WhovianTest Test Case
The unit tests for our Whovian class live in the test/WhovianTest.php file. We call a
group of related tests a test suite. In our example, all tests beneath the test/ directory
belong to the same test suite. Each class file beneath the test/ directory is called a test
case, and its class methods that begin with test (e.g., testThis or testThat) are indi‐
vidual tests. Each individual test uses assertions to verify a given condition. An asser‐
tion can pass or fail.

Find a list of PHPUnit assertions on the PHPUnit website. Some
assertions are undocumented; you can find all available assertions
in the source code on GitHub.

Each PHPUnit test case is a class that extends the PHPUnit_Framework_TestCase
class. Let’s declare a test case named WhovianTest in the test/WhovianTest.php file:

<?php
require dirname(__DIR__) . '/src/Whovian.php';

class WhovianTest extends PHPUnit_Framework_TestCase
{
 // Individual tests go here
}

Remember, unit tests verify a public interface’s expected behavior. We’ll test the three
public methods in the Whovian class. We’ll write a unit test to ensure that the __con
struct() method argument becomes the instance’s preferred doctor. Next, we’ll write

PHPUnit | 173

http://bit.ly/php-unit
http://bit.ly/phpu-gh

a unit test to ensure that the say() method’s return value mentions the instance’s pre‐
ferred doctor. Finally, we’ll write two tests for the respondTo() method. One test
ensures that the method’s return value is the string "I agree!" if the input matches
its preferred doctor. The second test that ensures the method throws an exception if
the input does not match its preferred doctor.

Test 1: __construct()

Our first test confirms that the constructor sets the Whovian instance’s favorite doctor:

public function testSetsDoctorWithConstructor()
{
 $whovian = new Whovian('Peter Capaldi');
 $this->assertAttributeEquals('Peter Capaldi', 'favoriteDoctor', $whovian);
}

This test instantiates a new Whovian instance with one string argument: "Peter Capa
ldi". We use the PHPUnit assertion method assertAttributeEquals() to assert the
favoriteDoctor property on the $whovian instance equals the string
"Peter Capaldi".

The PHPUnit assertion assertAttributeEquals() receives three
arguments. The first argument is the expected value; the second
argument is the property name; and the final argument is the
object to inspect. What’s neat is that the assertAttributeEquals()
method can inspect and verify protected properties using PHP’s
reflection capabilities.

Why do we inspect the favorite doctor value with the assertAttributeEquals()
assertion instead of a getter method (e.g., getFavoriteDoctor())? When we write a
test, we test only one specific method in isolation. Ideally, our test does not rely on
other methods. In this particular example, we test the __construct() method and
verify that it assigns its argument value to the object’s $favoriteDoctor property. The
assertAttributeEquals() assertion lets us inspect the object’s internal state without
relying on a separate, untested getter method.

Test 2: say()

Our next test confirms that the Whovian instance’s say() method returns a string
value that contains its favorite doctor’s name:

public function testSaysDoctorName()
{
 $whovian = new Whovian('David Tennant');
 $this->assertEquals('The best doctor is David Tennant', $whovian->say());
}

174 | Chapter 10: Testing

We use the PHPUnit assertion assertEquals() to compare two values. The asser‐
tion’s first argument is the expected value. Its second argument is the value to inspect.

Test 3: respondTo() in agreement

Now let’s test how a Whovian instance responds in agreement with another Whovian:

public function testRespondToInAgreement()
{
 $whovian = new Whovian('David Tennant');

 $opinion = 'David Tennant is the best doctor, period';
 $this->assertEquals('I agree!', $whovian->respondTo($opinion));
}

This test is successful because the Whovian instance’s respondTo() method receives a
string argument that includes the name of its favorite doctor.

Test 4: respondTo() in disagreement

But what if a Whovian disagrees? Get out of the area as quickly as possible, because s#!t
is going to hit the fan. Well, actually, it’ll just throw an exception. Let’s test that:

/**
 * @expectedException Exception
 */
public function testRespondToInDisagreement()
{
 $whovian = new Whovian('David Tennant');

 $opinion = 'No way. Matt Smith was awesome!';
 $whovian->respondTo($opinion);
}

If this test throws an exception, the test passes. Otherwise, the test fails. We can test
this condition with the @expectedException annotation.

PHPUnit provides several annotations that can control a given test.
Read more about PHPUnit annotations in the PHPUnit documen‐
tation.

Run Tests
After you write each test, you should run your test suite to ensure that it passes. This
is really simple to do. Open your terminal application and navigate to your project’s
topmost directory (the same directory as your phpunit.xml configuration file). We’ll
use the PHPUnit binary installed with Composer. Use this command to start the
PHPUnit test runner:

PHPUnit | 175

http://bit.ly/phpunit-docs
http://bit.ly/phpunit-docs

vendor/bin/phpunit -c phpunit.xml

The -c option specifies the path to the PHPUnit configuration file. The terminal
shows the results from the PHPUnit command-line test runner, and they look like
Figure 10-1.

Figure 10-1. PHPUnit test results

These results tell us:

1. PHPUnit read our configuration file.
2. PHPUnit took 24 ms to complete.
3. PHPUnit used 3.5 MB of memory.
4. PHPUnit successfully ran five tests and five assertions.

Code Coverage
We know our PHPUnit tests pass. However, are we sure we tested as much of our
code as possible? Perhaps we forgot to test something. We can see exactly which code
is tested (and untested) with PHPUnit’s code coverage report (Figure 10-2). We
already specify the path(s) to our source code files in the PHPUnit configuration file.
All PHP files in the whitelisted directories are included in PHPUnit’s code coverage
report. We can generate code coverage each time we run the PHPUnit test runner:

vendor/bin/phpunit -c phpunit.xml --coverage-html coverage

This is the same command we used earlier, except we append the new --coverage-
html option whose value is the path to a the code coverage report directory. After you
run this command, open the newly generated coverage/index.html file in a web
browser to see the code coverage results. Ideally, you want to see 100% coverage
across the board. However, 100% coverage is not realistic and definitely should not be

176 | Chapter 10: Testing

a requirement. How much coverage is good is subjective and varies from project to
project.

Figure 10-2. PHPUnit code coverage report

Use PHPUnit’s code coverage report as a guideline to improve your
code. Don’t use code coverage percentages as requirements.

Continuous Testing with Travis CI
Sometimes even the best PHP developers forget to write tests. This is why it is impor‐
tant to automate your tests. The best tests are like a good backup strategy—out of
sight and out of mind. Tests should run automatically. My favorite continuous testing
service is Travis CI because it has native hooks into GitHub repositories. I can run my
application tests within Travis CI every time I push code to GitHub. Travis CI runs
my tests against multiple PHP versions, too.

Setup
If you have not used Travis CI before, go to https://travis-ci.org (for public reposito‐
ries) or https://travis-ci.com (for private repositories). Log in with your GitHub
account. Follow the on-screen instructions to choose which repository to test with
Travis CI.

Next, create the .travis.yml Travis CI configuration file in your application’s topmost
directory. Don’t forget the leading . character! Save, commit, and push the Travis CI
configuration file to your GitHub repository. Here’s an example Travis CI configura‐
tion:

language: php
php:
 - 5.4
 - 5.5

Continuous Testing with Travis CI | 177

https://travis-ci.org/
https://travis-ci.org
https://travis-ci.com

 - 5.6
 - hhvm
install:
 - composer install --no-dev --quiet
script: phpunit -c phpunit.xml --coverage-text

The Travis CI configuration is written in YAML format and includes these settings:

language

This is the language used for our application. We set this to php. This value is
case-sensitive!

php

Travis CI runs our application tests against these PHP versions. It is important
that you test against all PHP versions supported by your application.

install

This is a bash command executed by Travis CI before it runs application tests.
This is where you instruct Travis CI to install your project’s Composer dependen‐
cies. It is important that you use the --no-dev option to avoid installing unneces‐
sary development dependencies.

script

This is the bash command executed by Travis CI to run application tests. By
default, this is phpunit. You can override Travis CI’s default command with this
setting. In this example, we tell Travis CI to use our custom PHPUnit configura‐
tion file and generate plain text coverage results.

Run
Travis CI automatically runs your application tests every time you push new commits
to your GitHub repository and emails you the test results. How cool is that? There
are, of course, many more Travis CI settings to further customize the Travis CI testing
environment (e.g., install custom PHP extensions, use custom ini settings, and so
on). Read more about Travis CI configuration for PHP at Travis CI.

Further Reading
Here are a few links to help you learn more about PHP application testing:

• https://phpunit.de/
• http://www.phpspec.net/docs/introduction.html
• http://behat.org/
• https://leanpub.com/grumpy-phpunit
• https://leanpub.com/grumpy-testing

178 | Chapter 10: Testing

http://bit.ly/build-php
https://phpunit.de/
http://www.phpspec.net/docs/introduction.html
http://behat.org/
https://leanpub.com/grumpy-phpunit
https://leanpub.com/grumpy-testing

• http://www.littlehart.net/atthekeyboard/

What’s Next
In this chapter we learned why, when, and how to write tests. Testing our applications
builds confidence and creates more predictable code. However, tests do not let us
analyze application performance. This is why we must also profile our applications.
That’s what I want to talk about next.

What’s Next | 179

http://www.littlehart.net/atthekeyboard/

CHAPTER 11

Profiling

Profiling is how we analyze application performance. It is a great way to debug perfor‐
mance issues and pinpoint bottlenecks in your application code. In other words, if
your application is slow, use a profiler to figure out why. Profilers let us traverse the
entire PHP call stack, and they tell us which functions or methods are called, in what
order, how many times, with what arguments, and for how long. We can also see how
much memory and CPU are used throughout the application request lifecycle.

When to Use a Profiler
You don’t need to profile your PHP applications immediately. You only profile PHP
applications if there is a performance issue that is otherwise hard to diagnose. How
do you know if you have a performance issue? Some issues are obvious (e.g., a data‐
base query takes too long). Other issues may not be as obvious.

You can detect performance issues with benchmarking tools like Apache Bench and
Siege. A benchmarking tool allows you to test your application performance exter‐
nally, much as an application user would with a web browser. Benchmarking tools let
you set the number of concurrent users and total number of requests that hit a spe‐
cific application URL. When the benchmarking tool finishes, it tells you the number
of requests per second that your application sustained (among other statistics). If you
find a particular URL sustains only a small number of requests per second, you may
have a performance issue. If the performance issue is not immediately obvious, you
use a profiler.

Types of Profilers
There are two types of profilers. There are those that should run only during develop‐
ment, and there are those that can run during production.

181

http://bit.ly/apache-bench
http://www.joedog.org/siege-home/

Xdebug is a popular PHP profiling tool written by Derick Rethans, but it should only
be used as a profiler during development because it consumes a lot of system resour‐
ces to analyze your application. Xdebug profiler results are not human-readable, so
you’ll need an application to parse and display the results. KCacheGrind and WinCa‐
cheGrind are good applications for visualizing Xdebug profiler results.

XHProf is a popular PHP profiler written by Facebook. It is intended to be run dur‐
ing development and production. XHProf ’s profiler results are also not human-
readable, but Facebook provides a companion web application called XHGUI to
visualize and compare profiler results. I’ll talk more about XHGUI later in this
chapter.

Both Xdebug and XHProf are PHP extensions, and you can install
them with your operating system’s package manager. They can also
be installed with pecl.

Xdebug
Xdebug is one of the most popular PHP profilers, and it makes it easy to analyze your
application’s call stack to find bottlenecks and performance issues. Refer to
Example 10-1 in Chapter 10 for Xdebug installation instructions.

Configure
Xdebug configuration lives in your php.ini file. Here are the Xdebug profiler configu‐
ration settings I recommend. Make sure you specify your own profiler output direc‐
tory. Restart your PHP process after saving these settings:

xdebug.profiler_enable = 0
xdebug.profiler_enable_trigger = 1
xdebug.profiler_output_dir = /path/to/profiler/results

xdebug.profiler_enable = 0

This instructs Xdebug to not run automatically. We don’t want Xdebug to run
automatically on each request, because that would drastically decrease perfor‐
mance and impede development.

xdebug.profiler_enable_trigger = 1

This instructs Xdebug to run on-demand. We can activate Xdebug profiling per-
request by adding the XDEBUG_PROFILE=1 query parameter to any of our
PHP application’s URLs. When Xdebug detects this query parameter, it profiles
the current request and generates a report in the output directory specified by the
xdebug.profiler_output_dir setting.

182 | Chapter 11: Profiling

http://xdebug.org
http://kcachegrind.sourceforge.net/
http://sourceforge.net/projects/wincachegrind/
http://sourceforge.net/projects/wincachegrind/
http://xhprof.io

xdebug.profiler_output_dir = /path/to/profiler/results

This is the directory path that contains generated profiler results. Profiler reports
can be massive (e.g., 500 MB or larger) for complex PHP applications. Make sure
you change this value to the correct filesystem path for your application.

I recommend you keep profiler results beneath your PHP applica‐
tion’s topmost directory. This makes it easy to find and review pro‐
filer results while developing your application.

Trigger
The Xdebug profiler does not run automatically because the xdebug.pro

filer_enable setting is 0. We trigger the Xdebug profiler for a single request by
adding the XDEBUG_PROFILE=1 query parameter to any PHP application URL. An
example HTTP request URL might be /users/show/1?XDEBUG_PROFILE=1. When
Xdebug detects the XDEBUG_PROFILE query parameter, it activates and runs the pro‐
filer for the current request. The profiler results are dumped into the directory speci‐
fied by the xdebug.profiler_output_dir setting.

Analyze
The Xdebug profiler generates results in the CacheGrind format. You’ll need a
CacheGrind-compatible application to review the profiler results. Some good applica‐
tions for reviewing CacheGrind files are:

• WinCacheGrind for Windows
• KCacheGrind for Linux
• WebGrind for web browsers

Mac OS X users can install KCacheGrind with Homebrew using this command:

brew install qcachegrind

Homebrew is a package manager for OS X. We discuss Homebrew
in Appendix A.

XHProf
XHProf is a newer PHP application profiler. It is created by Facebook and is intended
to be run during both development and production. It does not collect as much

XHProf | 183

http://sourceforge.net/projects/wincachegrind/
http://kcachegrind.sourceforge.net/
http://code.google.com/p/webgrind/
http://brew.sh

information as Xdebug’s profiler, but it consumes fewer system resources, making it
suitable for production environments.

Install
The easiest way to install XHProf is with your operating system’s package manager
(assuming you installed PHP the same way):

Ubuntu
sudo apt-get install build-essential;
sudo pecl install mongo;
sudo pecl install xhprof-beta;

CentOS
sudo yum groupinstall 'Development Tools';
sudo pecl install mongo;
sudo pecl install xhprof-beta;

Append these lines to your php.ini file, and restart your PHP process to load the new
extensions:

extension=xhprof.so
extension=mongo.so

XHGUI
XHProf is most useful when paired with XHGUI, Facebook’s companion web appli‐
cation used to review and compare XHProf profiler output. XHGUI is a PHP web
application and requires:

• Composer
• Git
• MongoDB
• PHP 5.3+
• PHP mongo extension

I assume these system requirements are installed. I also assume the XHGUI web
application lives in the /var/sites/xhgui/ directory. This directory path is probably dif‐
ferent on your server, so keep that in mind:

cd /var/sites;
git clone https://github.com/perftools/xhgui.git;
cd xhgui;
php install.php;

The XHGUI web application has a webroot/ directory. Update your web server virtual
host’s document root to this directory.

184 | Chapter 11: Profiling

Configure
Open XHGUI’s config/config.default.php file in a text editor. By default, XHProf col‐
lects data for only 1% of all HTTP requests. This is fine for production, but you may
want to collect data more frequently during development. You can increase XHProf ’s
data collection by editing these lines in the config/config.default.php file:

'profiler.enable' => function() {
 return rand(0, 100) === 42;
},

Change these lines to:

'profiler.enable' => function() {
 return true; // <-- Run on every request
},

XHProf assumes your PHP application runs on a single server. It
also assumes your MongoDB database does not require authentica‐
tion. If your MongoDB server does require authentication, update
the Mongo database connection in the config/config.default.php file.

Trigger
You must include the XHGUI web application’s external/header.php file at the very
beginning of your PHP application. It’s easiest to use PHP’s auto_prepend_file INI
configuration setting. You can set this in the php.ini configuration file:

auto_prepend_file = /var/sites/xhgui/external/header.php

Or you can set this in your nginx virtual host configuration:

fastcgi_param PHP_VALUE "auto_prepend_file=/var/sites/xhgui/external/header.php";

Or you can set this in your Apache virtual host configuration:

php_admin_value auto_prepend_file "/var/sites/xhgui/external/header.php"

Restart PHP, and XHProf will begin collecting and saving information into its Mon‐
goDB database. You can review and compare XHProf runs at the XHGUI virtual
host’s URL.

New Relic Profiler
Another popular PHP profiler is New Relic. This is actually a web service that uses a
custom operating system daemon and PHP extension to hook into your PHP applica‐
tion and report data back to the web service. Unlike Xdebug and XHProf, New Relic’s
PHP profiler is not free. That being said, I adore New Relic and recommend it if your
budget allows. Like XHProf, New Relic’s PHP profiler is meant to be run during

New Relic Profiler | 185

https://newrelic.com/

production, and it gives you a near real-time view of your application’s performance
with a really nice online dashboard. Learn more on New Relic’s website.

Blackfire Profiler
As I am writing this book, Symfony is currently testing a new PHP profiler called
Blackfire. It provides unique visualization tools to help discover application bottle‐
necks. I hear it’s looking like a really good alternative to Xdebug and XHProf. Keep an
eye on this one.

Further Reading
I hope I’ve introduced you to PHP profiling in this chapter so that you feel comforta‐
ble finding, installing, and using a PHP profiler most appropriate for your applica‐
tion. Here are a few links to help you learn more about PHP profiling:

• http://www.sitepoint.com/the-need-for-speed-profiling-with-xhprof-and-xhgui/
• https://blog.engineyard.com/2014/profiling-with-xhprof-xhgui-part-1
• https://blog.engineyard.com/2014/profiling-with-xhprof-xhgui-part-2
• https://blog.engineyard.com/2014/profiling-with-xhprof-xhgui-part-3

What’s Next
At this point we’ve talked a lot about modern PHP, including new features, good
practices, provisioning, tuning, deployment, testing, and profiling. I hope you have
filled your brain with tons of fun ideas to implement in your next PHP applications.

Now I want to take a few minutes to chat about the future of PHP. A lot is happening
in the PHP ecosystem. The future of PHP is unfolding as we speak thanks to forward-
looking projects like PHP 7, HHVM, Hack, and the PHP-FIG. Let’s explore HHVM
and Hack, specifically, and figure out what they mean for PHP’s future.

186 | Chapter 11: Profiling

http://bit.ly/new-relic-php
https://blackfire.io
http://www.sitepoint.com/the-need-for-speed-profiling-with-xhprof-and-xhgui/
https://blog.engineyard.com/2014/profiling-with-xhprof-xhgui-part-1
https://blog.engineyard.com/2014/profiling-with-xhprof-xhgui-part-2
https://blog.engineyard.com/2014/profiling-with-xhprof-xhgui-part-3
https://wiki.php.net/rfc/php7timeline
http://hhvm.com
http://hacklang.org
http://www.php-fig.org

CHAPTER 12

HHVM and Hack

Think what you will about the Facebook application, but I have nothing but praise for
the brilliant folks working at Facebook. Facebook Open Source has developed several
important projects in the last few years, two of which have had significant impact in
the PHP community.

The first initiative is HHVM, or the Hip Hop Virtual Machine. This alternative PHP
engine was released in October 2013. Its just-in-time (JIT) compiler provides perfor‐
mance many times better than PHP-FPM. In fact, WP Engine recently migrated to
HHVM and realized 3.9x faster custom Wordpress installations. MediaWiki also
transitioned to HHVM, and it has realized drastic improvements in both response
times and throughput.

The second initiative is Hack, a new server-side language that is a modification of the
PHP language. Hack is mostly backward-compatible with PHP code, although it
extends the PHP language with strict typing, new data structures, and a real-time type
checking server. That being said, Hack’s own developers prefer to call Hack a dialect
of PHP and not a new language.

HHVM
Since 1994, if you said PHP interpreter you meant the Zend Engine. The Zend Engine
was PHP. It was the one and only PHP interpreter. Then Mark Zuckerberg came
along and created this little thing called Thefacebook on February 4, 2004. Mr. Zuck‐
erberg and his growing company wrote the Facebook application predominantly with
PHP because the language is easy to learn and simple to deploy. The PHP language
lets Facebook quickly onboard new developers to grow, innovate, and iterate its
platform.

187

https://code.facebook.com/projects/
http://hhvm.com
http://bit.ly/engine-box
http://www.mediawiki.org/wiki/HHVM
http://hacklang.org
http://www.zend.com/en/community/php

Fast forward, and Facebook is a veritable empire. Its infrastructure is massive. Face‐
book is so huge that the traditional Zend Engine became a bottleneck for its develop‐
ers. The Facebook team had a hugely growing user base (by 2007, its user base
surpassed 1 in 10 people on the planet), and it had to figure out a way to improve
performance without simply building more data centers and buying more servers.

PHP at Facebook
The PHP language is traditionally interpreted, not compiled. This means that your
PHP code remains PHP code until it is sent through an interpreter when executed on
the command line or requested by a web server. The PHP script is read by the PHP
interpreter and converted into a set of existing Zend Opcodes (machine-code instruc‐
tions), and the Zend Opcodes are executed with the Zend Engine. Unfortunately,
interpreted languages execute more slowly than compiled languages because they
must be converted to machine code during every execution. This taxes system resour‐
ces. Facebook realized this performance bottleneck and, in 2010, began working on a
PHP-to-C++ compiler called HPHPc.

The HPHPc compiler converts PHP code into C++ code. It then compiles the C++
code into an executable that is deployed to production servers. HPHPc was largely
successful; it improved Facebook’s performance and reduced the strain on its servers.
However, HPHPc’s potential performance approached a ceiling, it was not 100% com‐
patible with the complete PHP language, and it required a time-consuming compile
process that created a lengthy feedback loop for developers. Facebook needed a
hybrid solution that delivered superior performance but also allowed for faster devel‐
opment without expensive compile time.

Facebook began working on the next iteration of HPHPc, called HHVM. HHVM
converts and caches PHP code into an intermediary bytecode format, and it uses a
JIT compiler to translate and optimize its bytecode cache into x86_64 machine code.
HHVM’s JIT compiler enables many low-level performance optimizations that are
simply not possible by compiling PHP directly to C++ with HPHPc. HHVM also
enables a fast feedback loop for developers because it compiles bytecode into machine
code only when PHP scripts are requested by a web server—just in time, you might
say—much like a traditional interpreted language. What’s more amazing is that
HHVM’s performance eclipsed HPHPc’s performance in November 2012, and it con‐
tinues to improve (Figure 12-1).

188 | Chapter 12: HHVM and Hack

http://php.net/manual/internals2.opcodes.php
http://bit.ly/hhvm-evo

Figure 12-1. HHVM vs. HPHPc Performance

HPHPc was deprecated soon after HHVM’s peformance exceeded its own, and
HHVM is currently Facebook’s preferred PHP interpreter.

Don’t let HHVM intimidate you! Its implementation may be com‐
plex, but at the end of the day HHVM is just a replacement for the
more familiar php and php-fpm binaries:

• You execute PHP scripts with the hhvm binary on the com‐
mand line, just like the php binary.

• You use the hhvm binary to create a FastCGI server, just like the
php-fpm binary.

• HHVM uses a php.ini configuration file, just like the tradi‐
tional Zend Engine. It even uses the same INI directives.

• HHVM has native support for many common PHP
extensions.

HHVM and Zend Engine Parity
Facebook’s original HPHPc compiler was not compatible with the complete PHP lan‐
guage (i.e., the Zend Engine). Complete parity is an aspiration for Facebook because
it lets HHVM become a drop-in replacement for the Zend Engine.

HHVM | 189

http://bit.ly/hhvm-evo

Facebook tested HHVM against the most popular PHP frameworks to ensure com‐
patibility with real-world PHP 5 code. Facebook is close to 100% compatibility. How‐
ever, Facebook has shifted its focus to user-reported issues on the HHVM issue
tracker to tackle remaining edge-case issues. HHVM is not yet 100% compatible with
the traditional Zend Engine, but it’s getting closer every day. Facebook, Baidu, and
Wikipedia already use HHVM in production. HHVM can also run Wordpress, Dru‐
pal, and many popular PHP frameworks.

Is HHVM Right for Me?
HHVM isn’t the right choice for everyone. There are far easier ways to improve appli‐
cation performance. Reducing HTTP requests and optimizing database queries are
low-hanging fruit that noticeably improve application performance and response
time. If you have not made these optimizations, do them first before you consider
HHVM. Facebook’s HHVM is for developers who have already made these optimiza‐
tions and still need faster applications. If you believe you need HHVM, here are some
resources to help you make the best decision:

Extensions
View a list of PHP extensions compatible with HHVM.

Framework Parity
Track HHVM parity with the most popular PHP frameworks.

Issue Tracker
Track open HHVM issues.

FAQs
Read HHVM frequently asked questions.

Blog
Follow the latest HHVM news.

Install
HHVM is easy to install on the most popular Linux distributions. It was originally
developed for Ubuntu (my preferred Linux distibution), so I use Ubuntu in the fol‐
lowing examples.

Facebook provides prebuilt packages for other Linux distributions,
including Debian and Fedora. You can build HHVM from source
on even more Linux distributions.

190 | Chapter 12: HHVM and Hack

http://bit.ly/fb-hhvm
http://bit.ly/fb-hhvm
http://bit.ly/fb-extensns
http://hhvm.com/frameworks/
http://bit.ly/fb-hhvm
https://github.com/facebook/hhvm/wiki/FAQ
http://hhvm.com/blog

Per Facebook’s instructions, you can install HHVM on the latest version of Ubuntu
with the Aptitude package manager like this:

wget -O - \
 http://dl.hhvm.com/conf/hhvm.gpg.key |
 sudo apt-key add -;
echo deb \
 http://dl.hhvm.com/ubuntu trusty main | sudo tee /etc/apt/sources.list.d/hhvm.list;
sudo apt-get update;
sudo apt-get install hhvm;

If you’re feeling lucky, swap the last line with this one to install the latest nightly
build:

sudo apt-get install hhvm-nightly;

The preceding code adds HHVM’s GNU Privacy Guard (GPG) public key for pack‐
age verification. It adds the HHVM package repository to our local list of reposito‐
ries. Finally, it installs HHVM with Aptitude like any other software package. The
HHVM binary is installed at /usr/bin/hhvm.

Configure
HHVM uses a php.ini configuration file just as the Zend Engine does. This file exists
at /etc/hhvm/php.ini by default, and it contains many of the same INI settings used by
the Zend Engine. You can find a complete list of HHVM php.ini directives at http://
docs.hhvm.com/manual/ini.list.php.

If you run HHVM as a FastCGI server, add server-related INI directives into the /etc/
hhvm/server.ini file. You can find a complete list of HHVM server directives at https://
github.com/facebook/hhvm/wiki/INI-Settings. The HHVM wiki page is weak on
details, so you may want to peruse these HHVM support communities, too:

• StackOverflow
• IRC Channel
• Facebook Page

The default /etc/hhvm/server.ini file should be sufficient to get you started. It looks
like this:

; php options

pid = /var/run/hhvm/pid

; hhvm specific

hhvm.server.port = 9000
hhvm.server.type = fastcgi
hhvm.server.default_document = index.php

HHVM | 191

http://bit.ly/fb-prebuilt
http://docs.hhvm.com/manual/ini.list.php
http://docs.hhvm.com/manual/ini.list.php
https://github.com/facebook/hhvm/wiki/INI-Settings
https://github.com/facebook/hhvm/wiki/INI-Settings
http://stackoverflow.com/questions/tagged/hhvm
http://webchat.freenode.net/?channels=hhvm
https://www.facebook.com/hhvm

hhvm.log.use_log_file = true
hhvm.log.file = /var/log/hhvm/error.log
hhvm.repo.central.path = /var/run/hhvm/hhvm.hhbc

The most notable settings are hhvm.server.port = 9000 and hhvm.server.type =
fastcgi; they tell HHVM to run as a FastCGI server on local port 9000.

When you execute the hhvm binary, you specify the path to your configuration files
with the -c option. If you use hhvm to execute command-line scripts, you only need
the /etc/hhvm/php.ini configuration file:

hhvm -c /etc/hhvm/php.ini my-script.php

If you use the hhvm binary to start a FastCGI server, you need both the /etc/hhvm/
php.ini and /etc/hhvm/server.ini files:

hhvm -m server -c /etc/hhvm/php.ini -c /etc/hhvm/server.ini

Extensions
HHVM cannot use PHP extensions that are compiled for the Zend Engine unless the
extensions use Facebook’s Zend Extension Source Compatibility Layer. Fortunately,
most of the PHP extensions we take for granted are supported by HHVM out of the
box. Other third-party PHP extensions (e.g., the GeoIP extension) can be compiled
separately and loaded into HHVM as a dynamic extension. You can find a list of PHP
extensions compatible with HHVM on GitHub.

Monitor HHVM with Supervisord
HHVM is just fine for your production server, but it’s not infallible. I recommend
you keep tabs on HHVM’s master process with Supervisord, a process monitor that
starts the HHVM process on boot and automatically restarts the HHVM process if
HHVM fails.

If you are unfamiliar with Supervisord, Chris Fidao has an excel‐
lent tutorial.

Install Supervisord with this command if you haven’t already:

sudo apt-get install supervisor

Next, make sure the /etc/supervisor/supervisord.conf configuration file has these two
lines:

[include]
files = /etc/supervisor/conf.d/*.conf

192 | Chapter 12: HHVM and Hack

http://bit.ly/ext-zen-comp
http://bit.ly/int-extension
http://supervisord.org
http://fideloper.com
http://bit.ly/c-fidao

These two lines let us create a configuration file in the /etc/supervisor/conf.d/ direc‐
tory for each supervised application. Next, create the /etc/supervisor/conf.d/hhvm.conf
file with this content:

[program:hhvm]
command=/usr/bin/hhvm -m server -c /etc/hhvm/php.ini -c /etc/hhvm/server.ini
directory=/home/deploy
autostart=true
autorestart=true
startretries=3
stderr_logfile=/home/deploy/logs/hhvm.err.log
stdout_logfile=/home/deploy/logs/hhvm.out.log
user=deploy

The most important settings are:

command

Supervisord runs this command to kick off the HHVM process. We use the -m
option to run HHVM in server mode. We also use the -c option to provide the
path to HHVM’s php.ini and server.ini configuration files.

autostart

This causes the HHVM process to start when the Supervisord process starts (e.g.,
on system boot).

autorestart

This prompts Supervisord to restart the HHVM process if it fails.

startretries

This is the number of times Supervisord should try to start the HHVM process
before Supervisord considers this process a failure.

user

This is the user that owns the HHVM process. I recommend you use an unprivi‐
leged user for security purposes. In this example, I use the same unprivileged
deploy user we created in Example 7-1.

Make sure you manually create the /home/deploy/logs directory,
because Supervisord does not create it for you.

After you finish editing the Supervisord configuration files, run these two commands
to reload and apply your changes:

sudo supervisorctl reread;
sudo supervisorctl update;

HHVM | 193

You can review all processes managed by Supervisord with this command:

sudo supervisorctl

You can start, stop, or restart a single Supervisord program as shown in the example
below. In this example, hhvm is the program name specified at the top of the /etc/
supervisor/conf.d/hhvm.conf file:

sudo supervisorctl start hhvm;
sudo supervisorctl stop hhvm;
sudo supervisorctl restart hhvm;

So far we’ve installed HHVM, and we monitor the HHVM process with Supervisord.
We still need a web server to proxy requests to HHVM. Remember, HHVM runs a
FastCGI server exactly as we do in Chapter 7 with PHP-FPM. We’ll use the HHVM
FastCGI server to handle PHP requests sent from nginx.

HHVM, FastCGI, and Nginx
HHVM communicates with a web server (e.g., nginx) with the FastCGI protocol. We
need to create an nginx virtual host that proxies PHP requests to the HHVM FastCGI
server. Here’s an example nginx virtual host definition that does that:

server {
 listen 80;
 server_name example.com;
 index index.php;
 client_max_body_size 50M;
 error_log /home/deploy/apps/logs/example.error.log;
 access_log /home/deploy/apps/logs/example.access.log;
 root /home/deploy/apps/example.com/current/public;

 location / {
 try_files $uri $uri/ /index.php$is_args$args;
 }

 location ~ \.php {
 include fastcgi_params;
 fastcgi_index index.php;
 fastcgi_param SCRIPT_FILENAME ument_root$fastcgi_script_name;
 fastcgi_pass 127.0.0.1:9000;
 }
}

From this point forward, I assume nginx is installed and running
on your server. Refer to Chapter 7 for nginx installation instruc‐
tions.

194 | Chapter 12: HHVM and Hack

Assuming you followed the nginx installation instructions in Chapter 7, create a file
at /home/deploy/apps/example.com/current/public/index.php with this content:

<?php
phpinfo();

Make sure the example.com domain points to your server’s IP address and visit http://
example.com/index.php in a web browser. You should see the word “HipHop” appear
in your browser window.

You can force your computer to point any domain name to any IP
address by updating your local /etc/hosts file. For example, this line
points the domain name example.com to IP address
192.168.33.10:

192.168.33.10 example.com

Congratulations! You’ve installed HHVM as a FastCGI server that can run your PHP
application. But a FastCGI server isn’t cool. You know what’s cool? Hack. HHVM can
run that, too.

The Hack Language
Hack is a server-side language that is similar to and seamless with PHP. Hack’s devel‐
opers even call Hack a dialect of PHP. Why did Facebook create something so similar
to PHP? Facebook created the Hack language for several reasons. The Hack language
adds new time-saving data structures and interfaces that are unavailable in PHP.
More important, Hack introduces static typing to help us write more predictable and
stable code. Static typing surfaces errors earlier in the development process using a
near-realtime type checking server.

Are new data structures, interfaces, and static typing worth the time required to learn
a new(ish) language and toolchain? Maybe. You have to remember that Facebook is
Facebook. It has thousands of developers all working on a gargantuan codebase. If
Facebook can optimize even the smallest part of its development process, it reaps a
large reward in both developer efficiency and a more stable, well-performing
codebase.

I do not recommend you drop what you’re doing and immediately port your existing
applications from PHP to Hack. However, if you are starting a new project and have
time to install and learn Hack, then—by all means—go wild. You’ll certainly benefit
from Hack’s data structures and static typing.

The Hack Language | 195

http://example.com/index.php
http://example.com/index.php
http://hacklang.org

Convert PHP to Hack
To convert code from PHP to Hack, change <?php to <?hh. That’s it. This is PHP
code:

<?php
echo "I'm PHP";

And this is equivalent Hack code:

<?hh
echo "I'm Hack";

Facebook makes it super-easy to go from PHP to Hack because it understands that
converting a large, existing codebase is not a quick task. Start your codebase migra‐
tion by only changing <?php to <?hh. Next, introduce a few static types. Later on,
explore some Hack data structures. The transition to Hack is gradual and painless,
and it happens on your schedule; this is by design.

What is a Type?
Before we compare dynamic and static typing, it’s probably helpful to define type.
Most PHP programmers think a type is the form of data assigned to a variable. For
example, the expression $foo = "bar" implies the $foo variable’s value is a string.
The expression $bar = 14 implies the $bar variable’s value is an integer. These exam‐
ples demonstrate types, yes, but they betray the full definition of a type.

A type is a nebulous label that we assign to properties of an application to prove that
certain behaviors exist and, to our own expectations, are fundamentally correct. I’m
paraphrasing Chris Smith’s excellent explanation of programming types.

We can expand our definition of a type to a syntactical annotation that clarifies the
identity of program variables, arguments, or return values. Type annotations (or
hints) are used in both PHP and Hack. You’ve probably seen code like this:

<?php
class WidgetContainer
{
 protected $widgets;

 public function __construct($widgets = array())
 {
 $this->widgets = array_values($widgets);
 }

 public function addWidget(Widget $widget)
 {
 $this->widgets[] = $widget;

 return this;

196 | Chapter 12: HHVM and Hack

http://bit.ly/prog-types

 }

 public function getWidget($index)
 {
 if (isset($this->widgets[$index]) === false) {
 throw new OutOfRangeException();
 }

 return $this->widgets[$index];
 }
}

This is an arbitrary example, but it uses syntax hints to enforce specific application
properties. For example, in the addWidget() method signature we use a Widget hint
before the $widget argument to tell PHP we expect the method argument to be an
instance of class Widget. The PHP interpreter enforces this expecation. If an argu‐
ment is provided that is not an instance of class Widget, the code fails. In this exam‐
ple, the type is our annotated expectation that the addWidget() method accepts
arguments only of class Widget.

Our earlier naive examples (e.g., $foo = "bar") and this WidgetContainer example
both demonstrate types. The first example demonstrates a type that proves a variable
is a string, even though we don’t explicitly annotate the expectation. The PHP inter‐
preter is smart enough to infer the string type in this example based on the code syn‐
tax. The second example creates a type with an annotation that explicitly defines the
expected behavior of the addWidget() method, and the PHP interpreter enforces this
behavior based on our explicit hint rather than making an inferrence.

Types are more than inferred identities and annotations. However,
these are the two manifestations you’ll see and use most often when
writing PHP and Hack code. You can learn more about program‐
ming types in Benjamin C. Pierce’s book “Types and Programming
Languages.”

If you thought that PHP type hints are static types, you’re probably scratching your
head right about now because I just burst your bubble. Both static and dynamic typ‐
ing help us write code that behaves correctly according to our expectations, and both
employ their own type systems. The main differences between static and dynamic
typing are when program types are checked and how a program is tested for correctness.

Static Typing
The correct behavior of a statically typed program is implied by the code, via inferen‐
ces, annotations, or other language-specific types. If a statically typed program com‐
piles successfully, we can be confident the program is proven to behave as written.

The Hack Language | 197

http://bit.ly/tpl-pierce
http://bit.ly/tpl-pierce

The program’s types become our tests, and they ensure that the program satisfies our
basic expectations.

Did you notice I used the word compiles? Statically typed languages are often com‐
piled. Type checking and error reporting are delegated to the language compiler. This
is nice, because the compiler surfaces type-related program errors at compile time
before the application is deployed into production. Unfortunately, compiled lan‐
guages imply a lengthy feedback loop. A program must be compiled to reveal errors,
and complicated programs take a long time to compile. This decelerates develop‐
ment.

The upside to statically typed programs is that they are usually more stable because
their behavior is proven by the compiler’s type checker. However, we should still write
separate tests to verify that the program behavior is correct. If a program compiles,
that only means the program does what the code says it should do. That does not
mean the program does what we intend it to do. That being said, static typing saves us
from writing type-related unit tests as we do for dynamically typed programs.

Dynamic Typing
Unlike static typing, dynamic typing cannot enforce code behavior at compile time,
because the program types are not checked until runtime. Dynamically typed pro‐
grams are often interpreted, too. PHP is a dynamically typed and interpreted lan‐
guage. This means that every time you execute a PHP script—either directly on the
command line or indirectly via a web server—the PHP code is read by an interpreter,
converted into a set of preexisting opcodes codes, and executed.

So how do you find errors if PHP is not compiled? Errors are surfaced during run‐
time. This is both a blessing and a curse. It’s good because we can iterate quickly. We
write code and run it. Feedback is near-instantaneous. Unfortunately, we lose the
inherent accuracy and tests provided by static type checking. Separate unit tests
become far more important to ensure both proper types and intended behavior. Our
tests must cover all possible behaviors. This works for the behavior we anticipate, but
it fails miserably for the behavior we do not anticipate. Unanticipated behaviors
gnash their teeth during runtime as PHP errors, and we must handle them gracefully
with friendly messages and appropriate logging.

Hack Goes Both Ways
Static typing is Hack’s biggest selling point. Even more interesting is that Hack does
static and dynamic typing. Remember, Hack is mostly backward-compatible with reg‐
ular PHP. This means Hack supports all of PHP’s dynamic typing features that you
expect. This is possible because Hack is run with HHVM’s JIT compiler. The Hack
code is type checked as it is written with a standalone type checker. The Hack code is
read, optimized, and cached into an intermediary bytecode by HHVM. A Hack file is

198 | Chapter 12: HHVM and Hack

only converted into x86_64 machine code and executed on demand. It’s really the
best of both worlds. We get the accuracy and safety of static typing with Hack’s type
checker (more on this next) and the flexibility and quick iteration of dynamic typing
thanks to HHVM’s JIT compiler.

There are a few PHP features not supported by Hack. They are lis‐
ted at http://docs.hhvm.com/manual/hack.unsupported.php. These
features are supported by HHVM when executing normal PHP
code.

Hack Type Checking
Hack comes with a standalone type-checking server that runs in the background and
type-checks your code in realtime. This is huge. This is also the main reason why
Facebook created the Hack language. Hack’s instantaneous type checking provides
the accuracy and safety of static typing without the lengthy feedback loop. If you are
using Hack without its type checker, you’re holding it wrong.

Here’s how to set up Hack’s type checker for your application. First, I assume HHVM
is installed and running. If not, refer to the HHVM section for installation instruc‐
tions. Next, create an empty file named .hhconfig in your project’s topmost directory.
This tells the Hack type checker which directory to analyze. The type checker watches
files beneath this directory and type-checks the appropriate files whenever it detects
filesystem changes. Start the Hack type checker by executing the hh_client com‐
mand in or beneath your project’s topmost directory.

Hack’s type checker does have a few limitations. Per Hack’s online documentation:
The type checker assumes that there is a global autoloader that can load any class on
demand. This means that it insists that all class and function names are unique, and
has no notion of checking imports or anything of that nature. Futhermore, it does not
support conditional definitions of functions or classes — it must be able to statically
know what is and what is not defined. It is of course perfectly possible to have a project
that meets these requirements without a global autoloader, and the type checker will
work fine on such a project, but a project using an autoloader was the intended use
case.
Mixing HTML and Hack code are not supported by the type checker. Following and
statically analyzing these complicated mode switches is unsupported, particularly since
much modern code doesn’t make use of this functionality. Hack code can output
markup to the browser in a simple way via echo, or using a templating engine or XHP
for more complex scenarios.

The Hack Language | 199

http://docs.hhvm.com/manual/hack.unsupported.php
http://bit.ly/hack-hhvm

Hack Modes
Hack code can be written in three modes: strict, partial, or decl. If you are start‐
ing a project with Hack, I recommend you use strict mode. If you are migrating
existing PHP code to Hack, or if your project uses both PHP and Hack code, you may
want to use partial mode. The decl mode lets you integrate legacy, untyped PHP
code into an otherwise strict Hack codebase. You declare the mode at the very top
of the file, after and adjacent to the opening Hack or PHP tag (see the following
examples). Mode names are case-sensitive:

<?hh // strict

Strict mode requires all code to be appropriately annotated. The Hack type
checker will catch all possible type-related errors. This mode also prevents your
Hack code from using non-Hack code (e.g., legacy PHP code). Be sure you read
up on Hack type annotations before you commit to strict mode. Among other
requirements, all Hack arrays must be typed; you cannot use an untyped array in
Hack. You must also annotate return types for functions and methods.

<?hh // partial

Partial mode (the default) allows Hack code to use PHP code that has not been
converted to Hack. Partial mode also does not require you to annotate all of a
function or method’s arguments. You can annotate a subset of the arguments
without angering the Hack type checker. If you are just getting started with Hack,
or if you are converting an existing PHP codebase, this is probably the best mode
for you.

<?php // decl

decl mode lets strict Hack code call untyped code. This is often the case when
newer Hack code depends on a legacy, untyped PHP class. In this scenario, the
legacy PHP code should declare itself in decl mode before the newer Hack code
can use it.

Hack Syntax
Hack supports type annotations for class properties, method arguments, and return
types. These annotations are checked with Hack’s standalone type checker in accord‐
ance with each file’s mode.

Read a complete list of available type annotations.

200 | Chapter 12: HHVM and Hack

http://docs.hhvm.com/manual/hack.annotations.types.php

Let’s revisit our earlier WidgetContainer example and introduce type annotations.
The updated Hack code looks like this:

01. <?hh // strict
02. class WidgetContainer
03. {
04. protected Vector<Widget> $widgets;
05.
06. public function __construct(array<Widget> $widgets = array())
07. {
08. foreach ($widgets as $widget) {
09. $this->addWidget($widget);
10. }
11. }
12.
13. public function addWidget(Widget $widget) : this
14. {
15. $this->widgets[] = $widget;
16.
17. return this;
18. }
19.
20. public function getWidget(int $index) : Widget
21. {
22. if ($this->widgets->containsKey($index) === false) {
23. throw new OutOfRangeException();
24. }
25.
26. return $this->widgets[$index];
27. }
28. }

Property annotations

On line 4, we declare the $widgets class property with the Vector<Widget> annota‐
tion. This annotation tells us two things:

• This property is a Vector (similar to a numerically indexed array).
• This property must contain only Widget instances.

Argument annotations
This is probably familiar to those of you who already use PHP type hints. On line 6,
we annotate the __construct() method’s argument with the array<Widget> annota‐
tion. This annotation tells us two things:

• The argument must be an array.

The Hack Language | 201

http://bit.ly/vector-tv

• The argument must contain only Widget instances.

Unlike the property annotation on line 4, this argument can be either a numeric or an
associative array. We iterate the array argument’s values and add them to the Vector
data structure. If you did want the argument to be either a numeric or an associative
array, you could use the array<int, Widget> or array<string, Widget> annota‐
tions respectively.

Return-type annotations

On lines 13 and 20, we annotate the methods’ return types. The addWidget() method
returns itself (more on this soon). The getWidget() method returns a Widget
instance. Return-type annotations are declared after the method signature’s closing
parenthesis and before the method body’s opening bracket.

The exception to this rule is the __construct() method. One
might think the constructor’s return value is void; it’s not. You
should not annotate the constructor method’s return type.

Some developers like to enable method chaining. This means that a class method
returns itself so that multiple method calls can be chained together like this:

$object->methodOne()->methodTwo();

Hack lets you annotate this behavior with the this return type. We use the this
annotation with the addWidget() method on line 13.

Hack Data Structures
The Hack language’s headline feature is static typing. However, Hack also provides
new data structures and interfacs that are not found in PHP. These can potentially
save you development time versus implementing similar workarounds in vanilla PHP.
Some of Hack’s new data structures and interfaces are:

• Collections (vectors, maps, sets, and pairs)
• Generics
• Enums
• Shapes
• Tuples

Many of these data structures complement, clarify, or supplement PHP’s functional‐
ity. For example, Hack’s Collection interfaces clarify PHP’s array ambiguity. Generics

202 | Chapter 12: HHVM and Hack

http://docs.hhvm.com/manual/en/hack.collections.php
http://docs.hhvm.com/manual/en/hack.generics.php
http://docs.hhvm.com/manual/en/hack.enums.php
http://docs.hhvm.com/manual/en/hack.shapes.php
http://docs.hhvm.com/manual/en/hack.tuples.php

let you create data structures to handle homogenous values of a given type that is
inferred only when an instance of the generic class is created; this alleviates the need
to manually enforce type checking inside a class with PHP’s instanceof method.
Enums are helpful for creating a set of named constants without resorting to abstract
classes. Shapes help you type-check data structures that should have a fixed set of
keys. And tuples let you use arrays of an immutable length.

Please don’t feel like you need to rush out and implement all of these data structures. I
admit, some of them are of limited and niche utility. Some data structures duplicate
(and extend) functionality found in other data structures. I suggest you read up on
which data structures are available and only use them if and when you need them.

I believe the most useful Hack data structures are the various Col‐
lection interfaces. These provide more appropriate and predictable
behavior than PHP’s array data structure. It’s best to use a Collec‐
tion instead of a PHP array.

HHVM/Hack vs. PHP
If HHVM and Hack are so awesome, why should you use PHP? I’m asked this ques‐
tion a lot. I’m also asked if and when PHP will meet its demise. The answer is not
black-and-white. It’s more a muddy neutral gray.

HHVM is the first true competitor to the traditional Zend Engine PHP runtime. As
of PHP 5.x, HHVM is proven to perform better and be more memory-efficient than
the Zend Engine on many real-world benchmarks. I think this caught the PHP core
development team by surprise. In fact, HHVM’s mere existence is probably responsi‐
ble for PHP’s renewed interest in increased performance and reduced memory usage.
The PHP core development team is already working on PHP 7, which is scheduled
for release in late 2015. The PHP 7 codebase promises to be competitive with, if not
better than, HHVM. Whether that will be true or not is anyone’s guess. However, the
point is that HHVM creates competition, and competition helps everyone. Both
HHVM and the Zend Engine will improve, and PHP developers will reap the bene‐
fits. Neither HHVM nor the Zend Engine is going to win or lose. I believe they will
coexist and feed off of their competitive energies.

The Hack language, in my opinion, is head-and-shoulders better than PHP. There are
several reasons for this. First, the Hack language was built by Facebook to answer
specific needs. It is focused. It has purpose. And it is not developed by committee.
The PHP language, in contrast, has evolved piecemeal over a longer period of time.
PHP answers many different needs, and it is controlled by a committee that is not
known for its cordial agreements. As of PHP 5.x, the Hack language is the better
option for its strict type checking and support for legacy PHP code. I believe a lot of
Hack’s best features will eventually find their way into PHP. And vice versa. In fact,

The Hack Language | 203

https://wiki.php.net/rfc/php7timeline

the Hack language team has said it intends to maintain future compatibility with the
Zend Engine. Again, I believe competition will improve both languages and they’ll
enjoy a symbiotic relationship.

An example of this symbiosis is the official PHP specification. Until recently, the PHP
language was the Zend Engine for lack of alternative implementations. The introduc‐
tion of HHVM prompted several developers at Facebook to announce a PHP lan‐
guage specification. This specification is an amazing development in the PHP
community, and it ensures that current and future PHP implementations (Zend
Engine, HHVM, and so on) all support the same fundamental language.

You can read the official PHP implementation on GitHub at https://
github.com/php/php-langspec.

Further Reading
We’ve touched on a lot of HHVM and the Hack language in a very short period of
time. There are simply not enough pages to cover everything these two initiatives
have to offer. Instead, I’ll point you to these helpful resources:

• http://hhvm.com
• http://hacklang.org
• @ptarjan on Twitter
• @SaraMG on Twitter
• @HipHopVM on Twitter
• @HackLang on Twitter

204 | Chapter 12: HHVM and Hack

http://bit.ly/fb-spec
http://bit.ly/fb-spec
https://github.com/php/php-langspec
https://github.com/php/php-langspec
http://hhvm.com
http://hacklang.org
https://twitter.com/ptarjan
https://twitter.com/SaraMG
https://twitter.com/HipHopVM
https://twitter.com/HackLang

CHAPTER 13

Community

The PHP community is your most valuable resource. It is diverse, vibrant, and global.
I encourage you to participate in the PHP community to learn from and share with
other PHP developers. There’s always more to learn, and your PHP community is the
best way to continue learning. It’s also a great way to meet and help other developers.

Local PUG
My first advice is to find and join your local PHP User Group (PUG). Many cities
have them. You can find your local PUG at http://php.ug. Your local PUG is the best
opportunity to meet and network with fellow PHP developers in your local
community.

If there isn’t a nearby PUG, you have several options. You can start your own PUG.
Unless you live in the middle of a jungle, I bet there are like-minded nearby PHP
developers who would love to join a PUG. Otherwise, you can join NomadPHP—an
online user group with monthly speakers and lightning talks that cover all sorts of
PHP features and practices.

Conferences
There are numerous PHP conferences every year. Conferences are an excellent
opportunity to meet and mingle with the greatest minds in the PHP community. You
can listen to and talk with PHP speakers and thought leaders. And you can stay up-
to-date with emerging features and modern practices. Conferences are also an excuse
to take a minivacation. You can find a list of upcoming PHP conferences at http://
php.net/conferences/.

205

http://php.ug
https://nomadphp.com
http://php.net/conferences/
http://php.net/conferences/

Mentoring
If you are a beginner PHP developer and need advice or assistance, you can find a
mentor at http://phpmentoring.org. Many expert PHP developers donate their time to
help new PHP developers become better. If you are already an expert PHP developer,
consider signing up as a PHP mentor. There are many beginner PHP developers who
don’t know how or where to start, and your mentorship will be invaluable.

Stay Up-to-Date
The PHP language changes frequently. Here are a few resources to help you stay up-
to-date with newer PHP features and modern practices.

Websites
• http://php.net
• http://php.net/docs.php
• http://www.php-fig.org
• http://www.phptherightway.com

Mailing Lists
• http://php.net/mailing-lists.php

Twitter
• @official_php
• @phpc

Podcasts
• http://voicesoftheelephpant.com
• http://looselycoupled.info
• http://elephantintheroom.io
• http://phptownhall.com
• http://devhell.info
• http://www.phpclasses.org/blog/category/podcast/

206 | Chapter 13: Community

http://phpmentoring.org
http://php.net
http://php.net/docs.php
http://www.php-fig.org
http://www.phptherightway.com
http://php.net/mailing-lists.php
https://twitter.com/official_php
https://twitter.com/phpc
http://voicesoftheelephpant.com
http://looselycoupled.info
http://elephantintheroom.io
http://phptownhall.com
http://devhell.info
http://www.phpclasses.org/blog/category/podcast/

• http://threedevsandamaybe.com/

Humor
• @phpbard
• @phpdrama

Stay Up-to-Date | 207

http://threedevsandamaybe.com/
https://twitter.com/phpbard
https://twitter.com/phpdrama

APPENDIX A

Installing PHP

Linux
Linux is my favorite development environment. I own a Macbook Pro with OS X, but
my development happens in a Linux virtual machine. PHP is easy to install on Linux
with a package manager such as aptitude on Ubuntu Server or yum on CentOS.

For now, we’re concerned only with PHP for command-line usage. We discuss how to
setup PHP-FPM and the nginx web server in Chapter 7.

Package Managers
Most Linux distributions provide their own package manager. For example, Ubuntu
uses the aptitude package manager. CentOS and Red Hat Enterprise Linux (RHEL)
use the yum package manager. Package managers are the simplest way to find, install,
update, and remove software on our Linux operating system.

Sometimes Linux package managers install out-of-date software.
For example, Ubuntu 14.04 LTS provides PHP 5.5.9; this is already
behind the latest release—PHP 5.6.3 (as of December 2014).

Fortunately, we can supplement our Linux package manager’s default software sour‐
ces with third-party repositories that contain more up-to-date, community-
maintained software packages. We’ll use a custom software repository for both
Ubuntu and CentOS to install the most recent PHP version. Before we go any further,
make sure you are the system root user or a user with sudo power. This is required to
install software with a Linux package manager.

209

Ubuntu 14.04 LTS
Ubuntu does not provide the latest PHP version in its default software repositories.
We’ll need to add a community-maintained Personal Package Archive (PPA) instead.
The term PPA is unique to Ubuntu, but the concept remains the same: we are using a
third-party software repository to expand Ubuntu’s default software selection. Ondřej
Surý maintains an excellent PPA that provides nightly builds for the latest stable PHP
release. This PPA is named ppa:ondrej/php5-5.6.

1. Add software dependencies

Before we add Ondřej Surý’s PPA, we must make sure the add-apt-repository
binary is available on our operating system. This binary is included in the python-
software-properties Ubuntu package. Type this command into your terminal
application and press Enter. Enter your account password if prompted:

sudo apt-get install python-software-properties

This command installs the Python Software Properties package that includes the add-
apt-repository binary. Now we can add the custom PPA.

2. Add ppa:ondrej/php5-5.6 PPA
This PPA expands Ubuntu’s available software selection beyond the default Ubuntu
software repositories. Type this command into your terminal application and press
Enter. Enter your account password if prompted:

sudo add-apt-repository ppa:ondrej/php5-5.6

This command adds the Ondřej Surý PPA to Ubuntu’s list of software sources. It also
downloads the PPA’s GPG public key and appends it to our local GPG keyring. The
GPG public key enables Ubuntu to verify that the packages in the PPA have not been
tampered with since they were built and signed by their original author.

Ubuntu caches the list of all available software. When we add new software sources,
we need to refresh Ubuntu’s cache. Type this command in your terminal application
and press Enter. Enter your account password if prompted:

sudo apt-get update

3. Install PHP

We can now use Ubuntu’s aptitude package manager to install the latest PHP stable
release from the Ondřej Surý PPA. Before we do, it is important to know which PHP
packages are available and what they do. PHP is distributed in two forms. One form
is a CLI package that enables you to use PHP on the command line (we will use this
one). There are several other PHP packages that integrate PHP with the Apache or

210 | Appendix A: Installing PHP

nginx web servers (we discuss these in Chapter 7). For now, we’ll stick with the PHP
CLI package.

First, let’s install the PHP CLI package. Type this command in your terminal applica‐
tion and press Enter. Enter your account password if prompted:

sudo apt-get install php5-cli

The Linux package manager also contains packages for individual PHP extensions
that can be installed separately. Let’s install a few of those now. Type this command in
your terminal application and press Enter. Enter your account password if prompted:

sudo apt-get install php5-curl php5-gd php5-json php5-mcrypt php5-mysqlnd

Verify PHP was installed successfully with this terminal command:

php -v

This command should output something similar to:

PHP 5.5.11-3+deb.sury.org~trusty+1 (cli) (built: Apr 23 2014 12:15:16)
Copyright (c) 1997-2014 The PHP Group
Zend Engine v2.5.0, Copyright (c) 1998-2014 Zend Technologies
 with Zend OPcache v7.0.4-dev, Copyright (c) 1999-2014, by Zend Technologies

CentOS 7
Like Ubuntu, CentOS and RHEL do not provide the latest stable version of PHP in
their default software repositories. RHEL is very particular about which software
packages are included in its official distribution because it prides itself on superior
security and stability; software updates are added slowly for the sake of safety.

We’re not a Fortune 500 company, so we can afford to install the latest PHP stable
release in our CentOS/RHEL Linux distribution. To do so, we’ll use the EPEL (Extra
Packages for Enterprise Linux) repository. The EPEL describes itself as:

…a Fedora Special Interest Group that creates, maintains, and manages a high quality
set of additional packages for Enterprise Linux, including, but not limited to, Red Hat
Enterprise Linux (RHEL), CentOS, Scientific Linux (SL), and Oracle Enterprise
Linux(OEL).

The EPEL repository is unrelated to the official CentOS/RHEL Linux distributions,
but it can still supplement the default CentOS/RHEL software repositories. And that’s
exactly what we’re going to do.

1. Add the EPEL repository
Let’s tell our CentOS/RHEL system to use the EPEL software repository. Type these
commands into your terminal application one-by-one, and press Enter after each
command. Enter your account password if prompted:

Installing PHP | 211

https://fedoraproject.org/wiki/EPEL

sudo rpm -Uvh \
 http://dl.fedoraproject.org/pub/epel/7/x86_64/e/epel-release-7-5.noarch.rpm;
sudo rpm -Uvh \
 http://rpms.famillecollet.com/enterprise/remi-release-7.rpm;

These commands add the third-party EPEL and remi software repositories to our
CentOS/RHEL system. You should now see epel.repo and remi.repo files in the /etc/
yum.repos.d directory.

2. Install PHP
Now we’ll install the latest PHP version from the EPEL and remi repositories. As I
mentioned earlier in the Ubuntu PHP installation, PHP is distributed in two forms.
One form is a CLI package that enables you to use PHP on the command line. For
now, we’ll stick with the PHP CLI package.

First, let’s install the PHP CLI package. Type this command in your terminal applica‐
tion and press Enter. Enter your account password if prompted.

sudo yum -y --enablerepo=epel,remi,remi-php56 install php-cli

Next, let’s install a few additional PHP extensions. You can search for a complete list
of PHP extensions with the yum package manager. Type this command into your ter‐
minal application and press Enter:

yum search php

Once you find a list of PHP extensions, install them as I do in this example. Your
package names might be different:

sudo yum -y --enablerepo=epel,remi,remi-php56 \
 install php-gd php-mbstring php-mcrypt php-mysqlnd php-opcache php-pdo

The important takeaway from this command is the --enablerepo option. This option
tells yum to install the specified software packages from the EPEL, remi, and remi-
php56 repositories. Without this option, yum only references its default software
sources.

Verify that PHP was installed successfully. Type this command in your terminal
application and press Enter:

php -v

This command should output something similar to:

PHP 5.6.3 (cli) (built: Nov 16 2014 08:32:30)
Copyright (c) 1997-2014 The PHP Group
Zend Engine v2.6.0, Copyright (c) 1998-2014 Zend Technologies
 with Zend OPcache v7.0.4-dev, Copyright (c) 1999-2014, by Zend Technologies

212 | Appendix A: Installing PHP

OS X
OS X includes PHP out of the box, but it’s probably not the latest version and it may
not have the PHP extensions you need. I recommend you ignore the PHP that comes
with OS X and use a custom PHP build instead. There are many ways to install PHP
on OS X, but I recommend two methods: MAMP and Homebrew.

MAMP
MAMP is the best way to install PHP on OS X if you cringe at the mere thought of
the command-line terminal. MAMP (which stands for Mac, Apache, MySQL, and
PHP) provides a traditional web-development software stack that includes an Apache
web server, a MySQL database server, and PHP. MAMP is an OS X application with a
GUI. Many users prefer the familiar GUI interface because it provides a nice point-
and-click interface for installing and configuring the MAMP software (Figure A-1).
MAMP lives in your /Applications folder, and you double-click its application icon to
launch it. It has a simple OS X package (.pkg) installer that makes it dead simple to
install and use. You can even drag it into your OS X Dock for quick access.

Figure A-1. Installing MAMP

Installing PHP | 213

Install
Download the MAMP package (.pkg) installer from http://www.mamp.info, and
double-click the MAMP package installer. Follow the on-screen instructions.

When the MAMP installer finishes, find the MAMP application in your /Applications
folder and launch it by double-clicking its application icon. After MAMP opens, click
the Start Servers button to start the Apache and MySQL servers (Figure A-2). It’s
really that simple.

Figure A-2. MAMP interface

What about PHP?, you ask. MAMP embeds PHP inside of the Apache web server
using the mod_php Apache module. Without getting into too much detail, you can use
PHP if the Apache web server is running. We discuss PHP deployment strategies in
Chapter 7.

After you start the Apache and MySQL servers, open your web browser and go to
http://localhost:8888. You should see a MAMP welcome page if MAMP is successfully
installed.

214 | Appendix A: Installing PHP

http://www.mamp.info
http://localhost:8888

The Apache web server typically listens for connections on port 80. MAMP, however,
runs Apache on port 8888. Likewise, MySQL typically listens for connections on port
3306. MAMP, however, runs MySQL on port 8889. You can change MAMPs default
ports in the MAMP application preferences. MAMP’s Apache web server document
root is /Applications/MAMP/htdocs. Any PHP files in this directory can be accessed in
a web browser at http://localhost:8888.

If you will use MAMP a lot, go into the MAMP application preferences (Figure A-3)
and make sure Start Servers when starting MAMP is checked. Then add the MAMP
application to your OS X account’s Login Items. This will start MAMP’s Apache and
MySQL servers automatically when you log in to OS X.

Figure A-3. MAMP application preferences

Extend
It is possible to download MAMP add-ons that provide different PHP versions for
your local MAMP installation. MAMP is updated frequently and most likely comes
bundled with the latest PHP version. But if for whatever reason it doesn’t, or if you

Installing PHP | 215

http://localhost:8888

need an older PHP version, go to the MAMP website and download the PHP version
you need.

Limitations
The MAMP free version provides only one Apache virtual host, and it does not let
you easily modify PHP’s configuration or extensions. MAMP is very basic and pro‐
vides only the bare necessities for PHP development on OS X.

MAMP provides a paid “Pro” version that lets you create multiple Apache virtual
hosts, easily edit your php.ini configuration file, and fine-tune PHP extensions.
MAMP Pro is nice, don’t get me wrong. But instead of forking out a good bit of
money for MAMP Pro, you’re better off learning a few command-line fundamentals
so you can use the excellent Homebrew package manager instead.

Homebrew
Homebrew is an OS X package manager comparable to Ubuntu’s aptitude and
RHEL’s yum package managers. Homebrew lets you easily browse, find, install, update,
and remove any number of custom software packages on OS X. However, Homebrew
is a command-line application. If you are not familiar with the OS X command line,
you will be more comfortable with MAMP.

Homebrew uses formulae to install software packages on your computer. Homebrew
provides default formulae for lots of software that’s not provided out of the box with
OS X. For example, there are Homebrew formulae for wget, phploc, phpmd, and php-
code-sniffer (to name just a few). If Homebrew’s default formulae are insufficient,
you can tap into third-party formulae repositories to expand your available Home‐
brew software selection. Homebrew is, without exception, my favorite way to install
PHP on OS X.

XCode command-line tools
Before we can install Homebrew, we must first install the XCode Command-Line
Tools provided (for free) by Apple, Inc. These command-line tools include the gcc
compiler (among other tools) needed by Homebrew to build and install software
packages. If you are running OS X Mavericks 10.9.2 or newer, open the OS X Termi‐
nal application, type this command, and press Enter:

xcode-select --install

This command opens this modal window shown in Figure A-4.

216 | Appendix A: Installing PHP

http://brew.sh
http://brew.sh/

Figure A-4. Installing XCode command-line tools

Click Install to begin installing the XCode Command-Line Tools. Click Agree when
the software license agreement appears. After the XCode Command-Line Tools soft‐
ware is installed, click Done and continue to the next step.

If you are using an older version of OS X, you must log into the Apple Developer Por‐
tal to download and run a standalone XCode Command-Line Tools package (.pkg)
installer.

Install
After you install the XCode Command-Line Tools, type this command in the OS X
Terminal application and press Enter:

ruby -e "$(curl -fsSL https://raw.github.com/Homebrew/homebrew/go/install)"

This command executes Ruby code that is downloaded from a
remote URL. You should always inspect the remote code before you
execute it, no matter how legitimate the source may be.

Directory permissions
Homebrew downloads and ferments software in the /usr/local/Cellar directory. It
symlinks installed software binaries to the /usr/local directory. Your OS X user
account must be able to access the /usr/local directory to use software installed with
the Homebrew package manager.

Installing PHP | 217

https://developer.apple.com/
https://developer.apple.com/

Let’s make sure your OS X user account owns the /usr/local directory. Type this com‐
mand into the OS X Terminal application and press Enter. Enter your administrator
password if prompted:

sudo chown -R `whoami` /usr/local

The chown command means “change the owner” of the specified directory, the -R
command flag means “make this change recursively to all subdirectories” of the
specified directory, and the whoami argument is dynamically substituted with your OS
X user account name. After you run this command, your OS X user account will own
(and therefore have access to) the /usr/local directory.

Environment PATH

Next, add the /usr/local directory to your OS X environment PATH. The environment
PATH is a list of directories to be searched when you execute software using only the
software’s name instead of the software’s absolute filesystem path. For example, if I
execute wget, OS X will search all directories on my environment PATH for the wget
software. Otherwise, I’d have to type /usr/local/wget every time I want to use wget.
Type this command into the OS X Terminal application and press Enter:

echo 'export PATH="/usr/local/bin:$PATH"' >> ~/.bash_profile

Tap formulae repositories
Before we install PHP with Homebrew, we must tap additional repositories that con‐
tain PHP-related formulae that do not exist in the default Homebrew repository.

First, we’ll tap the homebrew/dupes repository. This repository contains formulae for
software that already exists on OS X. This repository, however, contains newer soft‐
ware versions than OS X. Type this command in the OS X Terminal application and
press Enter:

brew tap homebrew/dupes

Next, we’ll tap the homebrew/versions repository. This repository contains multiple
versions of existing OS X software. Type this command in the OS X Terminal applica‐
tion and press Enter:

brew tap homebrew/versions

Finally, we’ll tap the homebrew/php repository. This repository contains PHP-related
formulae that might not be included in the default Homebrew repositories. The
default Homebrew software repository is not maintained by PHP developers. This
repository is, and it includes software appropriate for PHP developers. Type this
command in the OS X Terminal application and press Enter:

brew tap homebrew/php

218 | Appendix A: Installing PHP

Install PHP
So far, we’ve installed the Homebrew package manager, configured filesystem permis‐
sions, updated the environment PATH, and tapped into additional formulae reposito‐
ries. Now it’s time to install PHP. There are Homebrew formulae for each PHP
version and each PHP version’s extensions. Homebrew provides a very simple way to
search for available formulae. Type this command in the OS X Terminal application
and press Enter:

brew search php

You should see a lengthy list of Homebrew PHP formulae. Find the latest stable PHP
version in the formulae list (PHP 5.5.x will be named php55, PHP 5.6.x will be named
php56, and so on). I’ll pick php56 since PHP 5.6.x is the latest stable version (as of
December 2014). Type this command in the OS X Terminal application and press
Enter:

brew install php56

Installation may take a while, so feel free to grab a coffee and check back in a few
minutes. After the PHP software package is installed, you can confirm the installation
by executing php -v in the OS X Terminal application; this command outputs the full
name and version number of the PHP interpreter installed by Homebrew.

Install PHP extensions
Homebrew lets you install PHP extensions separately from the PHP interpreter. You
can search for PHP extensions just as you searched for PHP previously. Assuming
you chose php56, type this command in the OS X Terminal application and press
Enter:

brew search php56

You should see a lengthy list of PHP 5.6 extensions prefixed with php56-. After you
find the extensions you want, type this command in the OS X Terminal application
and press Enter. Swap the formulae in this example with the extension formulae you
want to install:

brew install php56-intl php56-mcrypt php56-xhprof

The Homebrew package manager is much more powerful than what I’ve shown here.
Type brew into the OS X Terminal application and press Enter to see a complete list of
Homebrew commands. You can also read the complete Homebrew documentation
online at http://brew.sh.

Installing PHP | 219

http://brew.sh

Build from Source
The precompiled PHP binary provided by your operating system’s package manager
may not always be up-to-date or exactly what you want. If this is true, you’re better off
building PHP from source code. Yes, this sounds scary. It took me a long time to
build up enough confidence before I compiled PHP for the first time. I can assure
you, it’s less scary than it sounds.

The build process is simple. We’ll download and extract the PHP source code. We’ll
configure the source code and make sure all of its software dependencies are
installed. And then we’ll make the actual PHP binaries. Download. Configure. Make.
Three simple steps.

Compiling PHP from source code gives you the flexibility to tweak the PHP build to
your exact specifications. Although there are many ways to configure PHP, for the
sake of time I’ll show you how I prefer to build PHP for my own projects. In addition
to PHP’s default features, I typically want PHP to support:

• OpenSSL
• Bytecode caching
• FPM (FastCGI process management)
• PDO database abstraction
• Encryption
• Multibyte strings
• Image manipulation
• Network sockets
• Curl

With this list in mind, let’s start building PHP. Try to follow along on your own com‐
puter. If this is your first time building PHP from source code, I strongly encourage
you to do this on a virtual machine. You can set up a local virtual machine with
VMware, Parallels, or VirtualBox. You can also fire up a dirt-cheap remote virtual
machine with DigitalOcean, Linode, and other web hosts that bill by the hour. If you
mess up, you can destroy the virtual machine, rebuild it, and try again without conse‐
quence.

Now take a deep breath, open your terminal application, and (most important) don’t
be afraid to make mistakes.

220 | Appendix A: Installing PHP

Get the Source Code
First, let’s download the PHP source code. Locate the latest stable version of the PHP
source code at http://www.php.net/downloads.php. For me, the latest stable release
happens to be version 5.6.3, but this may be different for you. Type the following
commands into your Terminal application and press Enter after each command.

The src/ directory
First, we create a src/ directory in our home folder. This folder will contain the source
code that we download from PHP.net. We cd into the src/ directory so that it becomes
our current working directory:

mkdir ~/src;
cd ~/src;

Download the source code

Next, we use wget to download the PHP source code as a tar.gz archive. The down‐
loaded file will be located at ~/src/php.tar.gz:

wget -O php.tar.gz http://www.php.net/get/php-5.6.3.tar.gz/from/this/mirror

Extract the PHP source code archive with the tar command, and cd into the unarch‐
ived source code directory:

tar -xzvf php.tar.gz;
cd php-*;

Configure PHP
We’ve downloaded the PHP source code. Now we need to configure it. Before we do,
we must install a few software dependencies. How do I know what dependencies to
install? I run the ./configure command (see the next subsection) until it works.
When the ./configure command fails due to a missing software dependency, it indi‐
cates what software is missing. Install the missing dependency and rerun the ./
configure command. Rinse and repeat until it works.

Luckily for you, I’ve already figured out what software dependencies are needed for
the PHP ./configure command we’ll be using. Let’s install these software dependen‐
cies now. I use commands for both Ubuntu/Debian and CentOS/RHEL Linux distri‐
butions; use the commands appropriate for your Linux distribution.

If for whatever reason the ./configure command reports addi‐
tional missing dependencies, you can search for the missing
dependency software packages online at http://pack
ages.ubuntu.com/ (for Ubuntu) or at https://fedoraproject.org/wiki/
EPEL (for CentOS).

Installing PHP | 221

http://www.php.net/downloads.php
http://packages.ubuntu.com/
http://packages.ubuntu.com/
https://fedoraproject.org/wiki/EPEL
https://fedoraproject.org/wiki/EPEL

Build essentials
We’ll need these fundamental software binaries to build PHP on your operating
system. These binaries include gcc, automake, and other fundamental develop‐
ment software:

Ubuntu
sudo apt-get install build-essential;

CentOS
sudo yum groupinstall "Development Tools";

libxml2

We’ll need the libxml2 library. This is used by PHP’s XML-related functions:

Ubuntu
sudo apt-get install libxml2-dev;

CentOS
sudo yum install libxml2-devel;

OpenSSL

We’ll need the openssl library. This is required to enable HTTPS stream wrap‐
pers in PHP, which is kind of important, right?

Ubuntu
sudo apt-get install libssl-dev;

CentOS
sudo yum install openssl-devel;

Curl
We’ll need the libcurl library. This is required by PHP’s Curl functions:

Ubuntu
sudo apt-get install libcurl4-dev;

CentOS
sudo yum install libcurl-devel;

Image manipulation
We’ll need the GD, JPEG, PNG, and other image-related system libraries. Fortu‐
nately, all of these are bundled into a single package. These are required to
manipulate images with PHP:

Ubuntu
sudo apt-get install libgd-dev;

CentOS
sudo yum install gd-devel;

222 | Appendix A: Installing PHP

Mcrypt

We’ll need the mcrypt system library to enable PHP’s Mcrypt encryption and
decryption functions. For whatever reason, there is no default CentOS Mcrypt
package. We’ll need to supplement the default CentOS packages with the third-
party EPEL package repository to install Mcrypt:

Ubuntu
sudo apt-get install libmcrypt-dev;

CentOS
wget http://dl.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noarch.rpm;
sudo rpm -Uvh epel-release-6*.rpm;
sudo yum install libmcrypt-devel;

The ./configure command
Now that our software dependencies are installed, let’s configure PHP. Type the fol‐
lowing ./configure command in your Terminal application and press Enter:

./configure
 --prefix=/usr/local/php5.6.3
 --enable-opcache
 --enable-fpm
 --with-gd
 --with-zlib
 --with-jpeg-dir=/usr
 --with-png-dir=/usr
 --with-pdo-mysql=mysqlnd
 --enable-mbstring
 --enable-sockets
 --with-curl
 --with-mcrypt
 --with-openssl;

This is a lengthy command with a lot of options. Don’t be overwhelmed. Each com‐
mand option has a specific purpose. You can find a list of all available options with ./
configure --help. We’ll go through this ./configure command line by line so you
know exactly what it does:

--prefix=/usr/local/php5.6.3

The --prefix option defines the path to a filesystem directory that will contain
the compiled PHP binaries, includes, libraries, and configuration files. I prefer to
keep my custom PHP build and related files together in a single parent directory
for the sake of organization. Your user account will need permission to write to
this directory. If you don’t have write permission to /usr/local, you can set the --
prefix to a directory in your user account’s home folder instead (e.g., ~/local/
php-5.5.13). Regardless, make sure the --prefix directory exists before you run
the ./configure command.

Installing PHP | 223

--enable-opcache

The --enable-opcache option enables PHP’s built-in bytecode caching system.
You will most always want to enable this. The performance benefits are tremen‐
dous.

--enable-fpm

The --enable-fpm option enables the built-in PHP FastCGI Process Manager.
This lets you run PHP as a FastCGI process that is accessible via a TCP port or a
local Unix socket. FPM is fast becoming the preferred way to run PHP (especially
with the nginx web server). If in doubt, I recommend you enable this option.

--with-gd

The --with-gd option lets PHP interface with your operating system’s GD
image-manipulation library. You will want to enable this option if you plan on
using PHP to manipulate images.

--with-zlib

The --with-zlib option lets PHP interface with your operating system’s Zlib
library. Zlib is a data-compression library that is needed by the GD image library
to create and manipulate PNG image data. This option is required if you use the
--with-gd option.

--with-jpeg-dir

The --with-jpeg-dir option specifies the path to the filesystem directory that
contains the JPEG libraries. This option is required if you use the --with-gd
option.

--with-png-dir

The --with-png-dir option specifies the path to the filesystem directory that
contains the PNG libraries. This option is required if you use the --with-gd
option.

--with-pdo-mysql=mysqlnd

The --with-pdo-mysql option instructs PHP to enable the PDO database
abstraction API for the MySQL database using PHP’s own native MySQL driver.
If you use MySQL, you’ll want to enable this option.

--enable-mbstring

The --enable-mbstring option instructs PHP to enable multibyte (read “Uni‐
code”) string support. You’ll most always want to enable this option.

--enable-sockets

The --enable-sockets option instructs PHP to enable network socket support
so that you can talk with remote machines via TCP sockets. You’ll most always
want to enable this option.

224 | Appendix A: Installing PHP

--with-curl

The --with-curl option lets PHP interface with your operating system’s curl
library. This lets you use PHP’s curl functions to send and receive HTTP
requests. You’ll most always want to enable this option.

--with-mcrypt

The --with-mcrypt option lets PHP interface with your operating system’s
mcrypt library for data encryption and decryption. Although this option is by no
means required, it is used by a growing number of PHP components. I strongly
recommend you enable this option.

--with-openssl

The --with-openssl option lets PHP interface with your operating system’s
openssl library. This is required to use PHP’s HTTPS stream wrapper. Although
this option is technically optional, it’s really not. Make Edward Snowden proud.
Enable this option.

Make and install PHP
Configuring PHP and installing its software dependencies was the hard part. It’s all
downhill from here. Assuming the ./configure command executed successfully,
type this command in your terminal application and press Enter:

make && make install

This will compile PHP and may take a while. Now is a good time to grab a coffee or
two. Eventually the command will finish and PHP will be installed. That wasn’t too
bad, right?

The compiled PHP binaries are available in the bin/ directory beneath your --prefix
directory. The php-fpm binary is available in the sbin/ directory beneath your --
prefix directory. Be sure the bin/ and sbin/ directories are added to your system’s
environment PATH so you can reference the php binary by name instead of absolute
path.

Create the php.ini file
Let’s not forget about our php.ini file. This may not be created automatically. The PHP
GitHub repository has a php.ini preconfigured for local development. Our php.ini file
should exist in the lib/ directory beneath your --prefix directory. Let’s create it now.
Type the following commands into your terminal application and press Enter after
each command.

First, cd into our PHP installation’s lib/ directory. This path may be different if you
used a different --prefix path in your ./configure command:

cd /usr/local/php5.6.3/lib

Installing PHP | 225

Next, download the PHP.ini file from PHP’s GitHub repository into a file named
php.ini:

curl -o php.ini \
 https://raw.githubusercontent.com/php/php-src/master/php.ini-development

That’s it. We’re all set to execute PHP files with the newly installed php interpreter. We
talked more about the php-fpm binary when we discussed PHP deployment strategies
in Chapter 7.

Windows
Yes, you can run PHP on Windows. However, I encourage you to use a Linux virtual
machine instead. It is very likely that your production server will be running a Linux
distribution, and you should set up your local development environment to closely
match your production environment. But if you must use Windows locally, here’s
how.

Binaries
The fine folks over at PHP.net provide prebuilt PHP binaries for Windows at http://
php.net/windows. Download the appropriate PHP release (provided as a ZIP archive)
and unpack it to a directory of your choice. I’ll unpack it to C:\PHP\. Copy the
php.ini-production file to php.ini in the same folder. No other changes are required to
use PHP on the Windows command line. You can execute a custom PHP script with
optional arguments like this:

C:\PHP\php.exe -f "C:\path\to\script.php" -- -arg1 -arg2 -arg3

You should add the PHP executable to your Windows PATH variable
and append the .php extension to your Windows PATHEXT variable
to save your future self from a lot of extra typing.

WAMP
You can also download and install WAMP to set up a quick and dirty local PHP
development environment. Like its OS X counterpart, MAMP, WAMP is an all-in-
one software package that provides a traditional web-development stack out-of-the-
box. It includes an Apache web server, a MySQL database server, and PHP. It has a
Windows software installer that will guide you through every step of the install pro‐
cess. WAMP also provides a configuration menu in the Windows Taskbar notification
area where you can quickly and easily start, stop, or restart your Apache and MySQL
servers. Like MAMP, WAMP embeds PHP in the Apache web server using the
mod_php Apache module. If your Apache server is running, you can use PHP.

226 | Appendix A: Installing PHP

http://php.net/windows
http://php.net/windows
http://bit.ly/addtopath
http://www.wampserver.com/en/

WAMP is your best bet for quickly installing a local PHP development stack on your
Windows machine. However, just as with MAMP, you are limited to the software and
extensions provided with WAMP. You can download additional PHP versions sepa‐
rately on the WAMP website. Learn more at http://www.wampserver.com/.

Zend Server
Another all-in-one solution is Zend Server. It is available in both free and paid ver‐
sions. Like WAMP, it provides an Apache web server, the latest PHP interpreter and
popular PHP extensions, a MySQL database server, and Zend’s own debugging tools
in one easy-to-install package. Just download the installer (.exe) file, run it, and follow
the on-screen instructions. Learn more at http://www.zend.com/en/products/server/.

Installing PHP | 227

http://www.wampserver.com/
http://www.zend.com/en/products/server/

APPENDIX B

Local Development Environments

We’ve talked a lot about production server provisioning and application deployment.
However, we haven’t discussed how to develop applications on your local computer.
What tools do you use? How do you reconcile your development environment with
your production environment? This chapter has answers.

Many beginner PHP developers rely on their operating system’s default software stack
—typically older versions of Apache and PHP. I strongly encourage you not to use
your operating system’s default software. Many OS X users (including me) have been
devastated when an OS X upgrade vaporized our heavily customized Apache configu‐
ration files. Steer clear of built-in software; it’s often out of date, and it may be over‐
written by operating system upgrades. Instead, build a local development
environment in a virtual machine that is safely isolated from your local operating sys‐
tem. A virtual machine is a software-emulated operating system. For example, you
can create a virtual machine on OS X that runs Ubuntu or CentOS. The virtual
machine behaves exactly like a separate computer.

Make sure your virtual machine runs the same operating system as
your production server (I prefer Ubuntu Server). It’s important that
your local development and production server environments use
the same operating system to prevent unexpected deployment and
runtime errors caused by operating system software discrepancies.

VirtualBox
There are many software programs that create and manage virtual machines. Some
are commercial products (e.g., VMWare Fusion or Parallels), and others are open
source products (e.g., VirtualBox). To be honest, VirtualBox is a solid product. It
works as advertised, and it’s free. VirtualBox is not pretty like its commercial

229

http://www.vmware.com/products/fusion
http://www.parallels.com/products/desktop/
https://www.virtualbox.org

alternatives, but it gets the job done. You can download VirtualBox for OS X or Win‐
dows at https://www.virtualbox.org. It uses a traditional GUI installer appropriate for
your operating system (Figure B-1).

Figure B-1. VirtualBox installer

Vagrant
Although VirtualBox lets us create virtual machines, it does not provide a user-
friendly interface to start, provision, stop, and destroy virtual machines. Instead, we
use Vagrant—a virtualization tool that helps you create, start, stop, and destroy Vir‐
tualBox virtual machines with a single command. It complements (and abstracts)
VirtualBox with a user-friendly, command-line interface. You can download Vagrant
for OS X and Windows at https://www.vagrantup.com. It also uses a traditional GUI
installer appropriate for your operating system.

Commands
After installation, you can use the vagrant command in your terminal application to
create, provision, start, stop, and destroy VirtualBox virtual machines. These are the
Vagrant commands you’ll use most often:

230 | Appendix B: Local Development Environments

https://www.virtualbox.org
https://www.vagrantup.com
https://www.vagrantup.com

vagrant init

This creates a new Vagrantfile configurations script in the current working
directory. We use this script to configure a virtual machine’s properties and pro‐
visioning details.

vagrant up

This creates and/or starts a virtual machine.

vagrant provision

This provisions a virtual machine using the specified provisioning scripts. We’ll
discuss provisioning later in this chapter.

vagrant ssh

This logs you into a virtual machine via SSH.

vagrant halt

This stops a virtual machine.

vagrant destroy

This destroys a virtual machine.

I recommend you create command-line aliases for these Vagrant
commands because you’ll type them a lot. Drop these into your
~/.bash_profile file and restart your terminal application:

alias vi="vagrant init"
alias vu="sudo echo 'Starting VM' && vagrant up"
alias vup="sudo echo 'Starting VM' && vagrant up --provision"
alias vp="vagrant provision"
alias vh="vagrant halt"
alias vs="vagrant ssh"

Boxes
We have VirtualBox and Vagrant installed. Now what? We need to choose a Vagrant
box as a starting point for our virtual machine. A Vagrant box is a preconfigured vir‐
tual machine that provides a foundation on which we provision our server and build
our PHP application. Some boxes are spartan shells used as a blank canvas. Other
boxes include complete software stacks that cater to certain types of applications. You
can browse available boxes at https://vagrantcloud.com.

I usually choose the spartan ubuntu/trusty64 box, and then I use Puppet to provision
the box with a specific software stack required by my application. If you find another
Vagrant box that already includes the tools you need, by all means use that box to
save time.

Local Development Environments | 231

https://vagrantcloud.com
https://vagrantcloud.com/ubuntu/boxes/trusty64

Initialize
After you find a Vagrant box, navigate into the appropriate working directory with
your terminal application. Initialize a new Vagrantfile with this command:

vagrant init

Open the new Vagrantfile file in your preferred text editor. This file is written with
Ruby, but it’s easy to read. Find the config.vm.box setting, and change its value to the
name of your Vagrant box. For example, if I prefer the Ubuntu box I change this set‐
ting to ubuntu/trusty64. The updated Vagrantfile line should read:

config.vm.box = "ubuntu/trusty64"

Next, uncomment this line so we can access our virtual machine in a web browser on
our local network at IP address 192.168.33.10:

config.vm.network "private_network", ip: "192.168.33.10"

Finally, create the virtual machine with this command:

vagrant up

This command downloads the remote Vagrant box (if necessary), and it creates a new
VirtualBox virtual machine based on the Vagrant box.

Provision
Unless you use a Vagrant box that provides a preconfigured software stack, your vir‐
tual machine doesn’t do anything. You need to provision the virtual machine with the
software to run your PHP application. At the very least, you want a web server, PHP,
and possibly a database. Provisioning a virtual machine is a topic far too large for this
book. I can, however, point you in the right direction. You can provision a virtual
machine with Vagrant and either Puppet or Chef. Both Puppet and Chef can be
enabled and configured in the the Vagrantfile configuration file.

Erika Heidi gave a great NomadPHP presentation on Vagrant and
provisioning tools like Puppet and Chef. She also wrote the
Vagrant Cookbook, now available on LeanPub.

Puppet

If you scroll down the Vagrantfile file, you’ll see a section that looks like this. It may
be commented out by default:

config.vm.provision "puppet" do |puppet|
 puppet.manifests_path = "manifests"

232 | Appendix B: Local Development Environments

http://erikaheidi.com
http://www.bit.ly/1zUJmqb
https://leanpub.com/vagrantcookbook

 puppet.manifest_file = "default.pp"
end

If you uncomment this section, Vagrant will provision the virtual machine with Pup‐
pet using your Puppet manifests. You can learn more about Puppet at http://puppet
labs.com.

Chef
If you prefer Chef ’s provisioning tools, you can instead uncomment this section of
the Vagrantfile file:

config.vm.provision "chef_solo" do |chef|
 chef.cookbooks_path = "../my-recipes/cookbooks"
 chef.roles_path = "../my-recipes/roles"
 chef.data_bags_path = "../my-recipes/data_bags"
 chef.add_recipe "mysql"
 chef.add_role "web"

 # You may also specify custom JSON attributes:
 chef.json = { mysql_password: "foo" }
end

Provide your own cookbooks, roles, and recipes. Vagrant will provision your virtual
machine accordingly. You can learn more about Chef at https://www.chef.io/chef/.

Synced folders
In either case, it’s often useful to map your local machine’s project directory to a
directory in the virtual machine. For example, you can map your local project direc‐
tory to the virtual machine’s /var/www directory. If the virtual machine’s web server
virtual host is /var/www/public, your local project’s public/ directory is now served
by the virtual machine’s web server. Any local changes are reflected immediately in the
virtual machine. You can uncomment this line in your Vagrantfile file to enable
synced directories between your local and virtual machines:

config.vm.synced_folder ".", "/vagrant_data"

The first argument (.) is your local path relative to the Vagrantfile configuration
file. The second argument (/vagrant_data) is the absolute path on the virtual
machine to which the local directory is mapped. The virtual machine directory
largely depends on your virtual machine’s web server virtual host configuration. OS X
users should enable NFS synced folders. Change the config.vm.synced_folder line
to this:

config.vm.synced_folder ".", "/vagrant_data", type: "nfs"

Then uncomment these lines and boost the VirtualBox machine’s memory to
1024MB:

Local Development Environments | 233

http://puppetlabs.com
http://puppetlabs.com
https://www.chef.io/chef/

config.vm.provider "virtualbox" do |vb|
 # Don't boot with headless mode
 # vb.gui = true

 # Use VBoxManage to customize the VM. For example to change memory:
 vb.customize ["modifyvm", :id, "--memory", "1024"]
end

Get started
Puppet and Chef are not easy to learn, especially for Vagrant newcomers. There are
tools available to help you get started with Vagrant that don’t require you to write
your own Puppet and Chef manifests.

Laravel Homestead
Homestead is an abstraction on top of Vagrant. It is also a Vagrant box that is precon‐
figured with a complete software stack including:

• Ubuntu 14.04
• PHP 5.6
• HHVM
• Nginx
• MySQL
• Postgres
• Node (With Bower, Grunt, and Gulp)
• Redis
• Memcached
• Beanstalkd
• Laravel Envoy

Homestead works great for any PHP application, too. I use Homestead on my local
machine to develop Slim and Symfony applications. Learn more about Homestead at
http://laravel.com/docs/4.2/homestead.

PuPHPet
PuPHPet is ideal for those who don’t know how to write Puppet manifests. This is a
point-and-click website that creates a Puppet configuration automatically
(Figure B-2). You download the resultant Puppet configuration and run vagrant up.
It really is that simple.

234 | Appendix B: Local Development Environments

http://laravel.com/docs/4.2/homestead
http://laravel.com/docs/4.2/homestead
https://puphpet.com

Figure B-2. PuPHPet

Vaprobash
Vaprobash is similar to PuPHPet. It doesn’t provide a point-and-click website, but it’s
almost as easy. You download the Vaprobash Vagrantfile, and you uncomment the
lines for the tools you need. Do you want nginx? Uncomment the nginx line. Do you
want MySQL? Uncomment the MySQL line. Do you want Elasticsearch? Uncomment
the Elasticsearch line. When ready, run vagrant up in your terminal application and
Vagrant will provision your virtual machine.

Local Development Environments | 235

http://fideloper.github.io/Vaprobash/

Index

Symbols
$context argument, 46
.htaccess files, 33
@ prefix, 115
_autoload() method, 39
_invoke() magic method, 26

A
addDocument() method, 14
addRoute() method, 28
aliases

custom, 10
default, 10
definition of term, 9

anonymous functions, 25
Apache Bench, 151, 181
auth.json files, 65
autoloading

components, 63
definition of term, 39
importance of, 47
namespaces and classes, 41
PSR4 autoloader standard, 13, 48
purpose of, 47
writing a PSR4 autoloader, 49

B
bcrypt hashing algorithm, 82
behavior-driven development (BDD), 167
benchmarking tools, 181
best practices (see good practices)
bindTo() method, 27
Bitbucket, 157
Blackfire, 186

BOM (byte-order marker), 41
bound parameters, 96
buffer size, tuning of, 155
bytecode caches, 29

(see also Zend OPcache)

C
caching, tuning of, 151
CamelCase format, 41
Capistrano

application deployment, 163
application rollback, 163
authentication, 161
benefits of, 158
config/deploy.rb file, 160
configuration of, 159
hooks in, 162
installation of, 159
operation of, 158
remote server preparation, 161
software dependencies and, 162
virtual hosts and, 162

case keyword, 44
catch keyword, 44
CentOS

nginx installation, 143
non-root user creation, 135
PHP installation, 211
PHP-FPM installation, 138
software updates, 135

Chef, 233
class definition, 43
class names, 9, 41

(see also namespaces)

237

classical inheritance, 18
closures

attaching state with, 27
creating, 25
purpose of, 25
vs. anonymous functions, 25

code style
autoloading, 41
automating compatibility, 45
class definition, 43
control structures, 44
files and lines, 42
indentation, 42
keywords, 43
method definition, 44
names, 41
namespaces, 43
PHP tags, 41
PSR-1: basic code style, 40
PSR-2: strict code style, 41
standardization of, 39
UTF-8 character set, 41
visibilities, 44

command line runner, 169
command-line scripts, 64
components

autoloading, 63
benefits of, 51, 57
characteristics of good, 52
Composer installation, 58
creating, 66-74
definition of term, 52
example project, 61
filesystem organization, 67
finding/selecting, 55
importance of, 58
installing, 60
naming, 60
private repositories, 64
using, 57
vs. frameworks, 53

Composer
benefits of, 57
composer.lock file, 62
example project, 61
importance of, 58
installation of, 58
installing components with, 59
private repositories, 64

composer.json files, 68
config/deploy.rb file, 160
config/deploy/production.rb file, 161
constant names, 41
control structures, 44

D
data

good practices for handling, 75
sanitizing HTML special characters, 76
sanitizing input, 76
SQL queries, 77
streaming, 106
streams, 106-114
user profile information, 78
validation of, 79

databases
connections and DSNs, 93
ensuring credentials security, 95
PDO extension, 93
PHP extensions for, 93
prepared statements, 96
query results, 98
transactions, 100

dates, times, and time zones
DateInterval Class, 89
DatePeriod class, 92
DateTime class, 88
DateTimeZone class, 91
nesbot/carbon component, 93
PHP classes for, 87
setting default time zones, 88

dedicated servers, 131
default aliases, 10
deployment

approaches to, 157
automating, 157
version control and, 157
with Capistrano, 158-163

dispatch() method, 28
do while keyword, 44
DRY (Do not repeat yourself), 18
DSN string argument, 94
dynamic typing, definition of term, 3

(see also typing)

E
else keyword, 44
elseif keyword, 44

238 | Index

email addresses, sanitizing, 78
encryption, vs. hashing, 82
EPEL (Extra Packages for Enterprise Linux)

repository, 211
errors and exceptions

catching exceptions, 117
differences between, 115, 119
during development, 123
error handlers, 121
error logging, 124
error reporting, 120
errors, 119
exception handlers, 118
exceptions, 115
logging exceptions, 119
throwing exceptions, 116

exec() function, 154
extends keyword, 43
external data sources, 75

F
Facebook Open Source project, 187
FastCGI protocol, 194
Ferrara, Anthony, 83
file uploads, tuning, 152
files, standards for, 42
filter_input() function, 78
filter_var() function, 78
firewalls, 138
for keyword, 44
foreach keyword, 44
Forge, 146
framework interoperability

autoloading, 39
code style, 39
interfaces, 38

frameworks
benefits of, 54
choosing, 54
popular PHP, 54
vs. components, 53

front controllers, 33
functional tests, 167
functions

anonymous, 25
closures, 25

G
generators

benefits and drawbacks of, 24
creating, 22
purpose of, 22
using, 23

getContent() method, 15
getId() method, 15
Git, 157
global namespaces, 12
good practices

benefits of, 75
components, 51-74
data handling, 75
data validation, 79
databases, 93-103
dates, times, and time zones, 87-93
DRY (Do not repeat yourself), 18
errors and exceptions, 115-126
escaping output, 80
multibyte strings, 103
passwords, 80-87
sanitizing input, 76
standards, 37-50
streams, 106-114
trait definition, 19
vs. best practices, 75

Gutmans, Andi, 2

H
Hack language

backwards compatibility of, 187
benefits of, 195, 198, 203
converting PHP to, 196
data structures, 202
dynamic typing, 198
features of, 3
modes in, 200
static typing, 197
syntax in, 200
type checking, 199
vs. PHP, 203

hashing
algorithms for, 82
vs. encryption, 82

HipHop Virtual Machine (HHVM)
applications using, 187
benefits of, 4, 188
choosing, 190
configuration of, 191
development of, 187

Index | 239

extensions for, 192
implementation of, 189
installation of, 190
vs. PHP, 203
Zend Engine parity, 189

Homebrew, 216
Homestead, 234
hooks, 162
hosting

approaches to, 129
choosing a plan, 132
companies available, 129
on dedicated servers, 131
on platforms as a service (PaaS), 131
on shared servers, 129
on virtual private servers (VPS), 130

HPHPc compiler, 188
HTML Purifier library, 77
HTML, sanitizing special characters, 76
htmlentities() function, 76, 80
HTTP server

benefits of, 31
configuring, 32
detecting, 33
drawbacks of, 33
router scripts, 33
starting, 32

human-readable stories, 168

I
identifiers, 107
if keyword, 44
implements keyword, 43
import, definition of term, 9
importing

multiple imports, 11
namespaces vs. traits, 21

indentation, 42
inheritance, classical, 18
input, sanitizing, 76, 96
installation

build from source, 220-226
CentOS 7, 211
development environment, 209
Homebrew, 216
MAMP (Mac, Apache, MySQL and PHP),

213
OS X, 213
package managers, 209

Ubuntu 14.04 LTS, 210
Windows, 226
Xcode command-line tools, 216

interfaces
benefits of, 38
benefits of coding to, 17
concept of, 13
importance of, 13
logger interface recommendations, 45

interoperability methods
autoloading, 39
code style, 39
interfaces, 38

interpreted languages, 29
interval specification, 89
iterators, 22

(see also generators)

J
just in time (JIT) compilers

benefits of, 4
HHVM, 188

K
KCacheGrind, 182
key-pair authentication, 136
keywords, 43

L
Laravel Homestead, 234
Lederdorf, Rasmus, 1
LF Unix linefeed ending, 42
lines, standards for, 42
Linode, 130, 134
local development environments

benefits of, 2
Homestead, 234
PuPHPet, 234
purpose of, 229
syncing folders, 233
Vagrant, 230
Vaprobash, 235
VirtualBox, 229

logger interface
standards for, 45
using a PSR-3 logger, 47
writing a PSR-3 logger, 46

240 | Index

M
magic methods

_autoload() method, 39
_invoke() method, 26

makeRange() method, 23
MAMP (Mac, Apache, MySQL and PHP), 213
maximum execution time, tuning, 153
mbstring extension, 105
memory, tuning of, 150
Mercurial, 157
method definition, 44
method names, 41
monolog/monolog logger, 45, 124
multibyte strings, 103

N
named placeholders, 97
names/naming

components, 60
package name, 66
standards for, 41
vendor name, 66

namespaces, 5-13, 43, 66
autoloader standard, 13
benefits of, 7
component, 66
declaring, 8, 43
example declaration, 6
global, 12
importing and aliasing, 9
multiple imports, 11
multiple in one file, 12
purpose of, 5
vendor namespace, 9
vs. filesystems, 7

nesbot/carbon component, 93
New Relic, 185
nginx

installation of, 143
virtual host configuration, 143

Nginx
HHVM communication with, 194

non-root user, 135

O
object-oriented programming, 14
opcode cache, 151
OS X, 213

output buffering, tuning of, 155
output, escaping, 80

P
package managers, 209
package names, 66
Packagist, 55, 73
passwords

correct handling of, 81
disabling, 138
ensuring security of, 80
hashing with bcrypt, 82
password hashing API, 82-87
storing, 82

PDO (PHP data objects) database extension, 93
PDO prepared statements, 78
performance issues, 181

(see also profiling)
period designator, 89
PHP Code Sniffer (phpcs), 45
PHP community

benefits of, 205
conferences, 205
language updates, 206
mentoring, 206
PUGs (PHP User Groups), 205
resources, 206

PHP Framework Interop Group (PHP-FIG)
autoloader standard, 13, 39
creation of, 37
mission of, 38
operation of, 38
recommendations vs. rules, 38

PHP Iniscan tool, 150
PHP keywords, 43
PHP language

as interpreted language, 188
closures, 25-28
converting to Hack, 196
engines for, 3
essential vs. nonessential features, 5
evolution of, 2
generators, 22-25
history of, 1
HTTP server, 31-34
interfaces, 13-17
namespaces, 5-13
official daft specification, 2
PHP 7 release, 4

Index | 241

traits, 17-21
vs. Hack/HHVM, 203
Zend OPcache, 29-31

PHP tags, 41
PHP-CS-Fixer, 45
PHP-FPM (PHP FastCGI Process Manager)

global configuration, 139
installation of, 138
pool configuration, 140
purpose of, 138

php.ini file, 149
PHPUnit, 168-177

code coverage, 176
configuring, 171
directory structure, 169
hypothetical test case, 173
hypothetical test class, 172
installing PHPUnit, 170
installing Xdebug, 170
running tests, 175
vocabulary used, 168

placeholders, 46
placeholders, named, 97
platforms as a service (PaaS)

benefits of hosting on, 131
provisioning via, 133

Pool Definitions, 140
prepared statements, 96
private repositories, 64
profiling

Blackfire, 186
New Relic, 185
purpose of, 181
timing of, 181
types of profilers, 181
Xdebug, 182
XHProf, 183

provisioning
approaches to, 133
automating, 146
delegating, 146
nginx, 143
overview of, 134
PHP-FPM, 138-142
server setup, 134-138
skills required, 133
via Paas, 133

PSR (PHP standards recommendation)
benefits of, 40

importance of, 40
PSR-1: basic code style, 40
PSR-2: strict code style, 41
PSR-3: logger interface, 45
published recommendations, 40

public code repositories, 72
PUGs (PHP User Groups), 205
PuPHPet, 234
Puppet, 232

R
README files, 70
realpath cache, 155
regular expression functions, 77
releases, versioning of, 61
RFC 5424 syslog protocol, 46
rollbacks, 163
root users, 138
router scripts, 33

S
scan.php script, 63
schemes, 107
Seige, 151
semantic versioning, 61
server setup, 134-138

disabling passwords/root login, 138
firewalls, 138
first login, 134
security, 135
software updates, 135
SSH key-pair authentication, 136

server-side scripting, definition of term, 1
session handling, tuning of, 154
shared servers, 129
Siege, 181
smarty/smarty template engine, 80
software dependencies, 162
SPACE characters, 42, 44
SpecBDD, 167
special characters

multibyte strings, 103
sanitizing HTML, 76

specification, definition of term, 3
spl_autoload_register() method, 39
SQL queries, 77
SSH key-pair authentication, 136
standards

framework interoperability, 38

242 | Index

importance of, 37
PHP standards recommendation, 40
PHP-FIG, 37
PSR-1: basic code style, 40
PSR-2: strict code style, 41
PSR-3: logger interface, 45
PSR-4: autoloaders, 47

state, attaching/enclosing, 27
static typing, definition of term, 3

(see also typing)
StoryBDD, 167
streams

benefits of, 106
custom stream filters, 112
definition of term, 106
introduction of, 106
stream context, 109
stream filters, 110
stream wrappers, 106

stress testing, 151
strings, multibyte, 103
Supervisord, 192
Suraski, Zeev, 2
switch keyword, 44

T
TAB character, 42
targets, 107
template engines, 80
test case, 169
test runner, 169
test suite, 169
test-driven development (TDD), 167
testing

behavior-driven development (BDD), 167
continuous testing, 177
importance of, 165
micro and macroscopic scales, 166
stress testing, 151
test-driven development (TDD), 167
timing of, 166
unit tests, 167
with PHPUnit, 168-177
with Travis CI, 177

TitleCase format, 41
traits

benefits of, 18
compile-time class definitions, 21
creating, 19

definition of term, 17
purpose of, 18
using, 20

transactions, PDO support for, 100
Travis CI, 177
try keyword, 44
tuning

benefits of, 149
file uploads, 152
maximum execution time, 153
memory, 150
output buffering, 155
php.ini file, 149
realpath cache, 155
session handling, 154
Zend OPcache, 151

Twig template engine, 80
typing

benefits of static, 195, 198
definition of term, 196
dynamic, 198
dynamic vs. static, 3
static, 197
type checking, 199

U
Ubuntu

nginx installation, 143
non-root user creation, 135
PHP installation, 210
PHP-FPM installation, 138
software updates, 135
virtual host configuration, 145

Unicode standards, 104
unit tests

definition of term, 166
frameworks for, 167
purpose of, 167

use func keyword, 11
use keyword, 11, 21, 27
user profile information, 78
UTC time zone, 91
UTF-8 character set, 41, 104

V
Vagrant, 230
Vaprobash, 235
VARCHAR(255) database columns, 85
vendor names, 66

Index | 243

vendor namespace, 8
version control

importance of, 157
public code repositories, 72
semantic versioning, 61
software for, 2

virtual hosts, 143, 162
virtual machines, 229
virtual private servers (VPS), 130
VirtualBox, 229
visibilities, 44

W
WAMP, 226
web hosting (see hosting)
while keyword, 44
Whoops component, 123
WinCacheGrind, 182
Windows, 226
work factor, 82

X
Xcode command-line tools, 216
Xdebug profiler

analysis, 183
configuration of, 182
drawbacks of, 182
installation of, 170, 182
triggering, 183
using with Zend OPcache, 30

XHGUI, 184
XHProf, 182, 183

Z
Zend Engine, 3, 187, 189
Zend Extension Source Compatibility Layer

monitoring with Supervisord, 192
web server communication, 194

Zend OPcache
benefits of, 29
configuring, 31
enabling, 29
tuning of, 151
using, 31

Zend Opcodes, 188
Zend Server, 227
Zend-style class names, 9

244 | Index

About the Author
Josh Lockhart created the Slim Framework, a popular PHP micro framework that
enables rapid Web application and API development. Josh also started and currently
curates PHP The Right Way, a popular initiative in the PHP community that encour‐
ages good practices and disseminates quality information for PHP developers around
the world.

Josh is a developer at New Media Campaigns, a full-service web design, development,
and marketing agency in Carrboro, North Carolina. He enjoys building custom appli‐
cations with HTML, CSS, PHP, JavaScript, Bash, and various content management
frameworks.

He graduated from the Information and Library Science program at the University of
North Carolina at Chapel Hill in 2008. He currently resides in Chapel Hill, North
Carolina with his wonderful wife, Laurel, and their two dogs.

You can at follow Josh on Twitter, read his blog at https://joshlockhart.com, and track
his open source projects on GitHub.

Colophon
The animal on the cover of Modern PHP is a straw-necked ibis (Threskiornis spinicol‐
lis). It can be found throughout Australia, New Guinea, and parts of Indonesia.

Straw-necked ibises are large birds, growing up to 30 inches long. The distinctive stiff
feathers on the neck from which the bird gets its name appear during adulthood.
They have long, curved beaks that help them sift through water for insects, mollusks,
and frogs. Farmers welcome straw-necked ibises in their fields because the birds will
eat insects, grasshoppers, crickets and locusts that would have otherwise destroyed
crops.

These birds are very nomadic, and travel in flocks between habitats. They favor shal‐
low freshwater wetlands, cultivated pastures, swamps, lagoons, and grasslands. Dur‐
ing breeding season, these ibises will build a large, cup-shaped nest of sticks and reeds
high up in trees over water. They are also known to nest in colonies, often together
with the Australian white ibis. For this reason, they are easily spotted standing in the
high branches of bare trees, creating a striking silhouette against the sky.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Woods Illustrated Natural History. The cover fonts are URW
Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading font
is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://slimframework.com/
http://www.phptherightway.com/
http://www.newmediacampaigns.com/
http://sils.unc.edu/
https://twitter.com/codeguy
https://joshlockhart.com
https://github.com/codeguy
http://animals.oreilly.com

	Table of Contents
	Preface
	What You Need to Know About This Book
	How This Book Is Organized
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Part I. Language Features
	Chapter 1. The New PHP
	Past
	Present
	Future

	Chapter 2. Features
	Namespaces
	Why We Use Namespaces
	Declaration
	Import and Alias
	Helpful Tips

	Code to an Interface
	Traits
	Why We Use Traits
	How to Create a Trait
	How to Use a Trait

	Generators
	Create a Generator
	Use a Generator

	Closures
	Create
	Attach State

	Zend OPcache
	Enable Zend OPcache
	Configure Zend OPcache
	Use Zend OPcache

	Built-in HTTP server
	Start the Server
	Configure the Server
	Router Scripts
	Detect the Built-in Server
	Drawbacks

	What’s Next

	Part II. Good Practices
	Chapter 3. Standards
	PHP-FIG to the Rescue
	Framework Interoperability
	Interfaces
	Autoloading
	Style

	What Is a PSR?
	PSR-1: Basic Code Style
	PSR-2: Strict Code Style
	PSR-3: Logger Interface
	Write a PSR-3 Logger
	Use a PSR-3 Logger

	PSR-4: Autoloaders
	Why Autoloaders Are Important
	The PSR-4 Autoloader Strategy
	How to Write a PSR-4 Autoloader (and Why You Shouldn’t)

	Chapter 4. Components
	Why Use Components?
	What Are Components?
	Components Versus Frameworks
	Not All Frameworks Are Bad
	Use the Right Tool for the Job

	Find Components
	Shop
	Choose
	Leave Feedback

	Use PHP Components
	How to Install Composer
	How to Use Composer
	Example Project
	Composer and Private Repositories

	Create PHP Components
	Vendor and Package Names
	Namespaces
	Filesystem Organization
	The composer.json File
	The README file
	Component Implementation
	Version Control
	Packagist Submission
	Using the Component

	Chapter 5. Good Practices
	Sanitize, Validate, and Escape
	Sanitize Input
	Validate Data
	Escape Output

	Passwords
	Never Know User Passwords
	Never Restrict User Passwords
	Never Email User Passwords
	Hash User Passwords with bcrypt
	Password Hashing API
	Password Hashing API for PHP < 5.5.0

	Dates, Times, and Time Zones
	Set a Default Time Zone
	The DateTime Class
	The DateInterval Class
	The DateTimeZone Class
	The DatePeriod Class
	The nesbot/carbon Component

	Databases
	The PDO Extension
	Database Connections and DSNs
	Prepared Statements
	Query Results
	Transactions

	Multibyte Strings
	Character Encoding
	Output UTF-8 Data

	Streams
	Stream Wrappers
	Stream Context
	Stream Filters
	Custom Stream Filters

	Errors and Exceptions
	Exceptions
	Exception Handlers
	Errors
	Error Handlers
	Errors and Exceptions During Development
	Production

	Part III. Deployment, Testing, and Tuning
	Chapter 6. Hosting
	Shared Server
	Virtual Private Server
	Dedicated Server
	PaaS
	Choose a Hosting Plan

	Chapter 7. Provisioning
	Our Goal
	Server Setup
	First Login
	Software Updates
	Nonroot User
	SSH Key-Pair Authentication
	Disable Passwords and Root Login

	PHP-FPM
	Install
	Global Configuration
	Pool Configuration

	nginx
	Install
	Virtual Host

	Automate Server Provisioning
	Delegate Server Provisioning
	Further Reading
	What’s Next

	Chapter 8. Tuning
	The php.ini File
	Memory
	Zend OPcache
	File Uploads
	Max Execution Time
	Session Handling
	Output Buffering
	Realpath Cache
	Up Next

	Chapter 9. Deployment
	Version Control
	Automate Deployment
	Make It Simple
	Make It Predictable
	Make It Reversible

	Capistrano
	How It Works
	Install
	Configure
	Authenticate
	Prepare the Remote Server
	Capistrano Hooks
	Deploy Your Application
	Roll Back Your Application

	Further Reading
	What’s Next

	Chapter 10. Testing
	Why Do We Test?
	When Do We Test?
	Before
	During
	After

	What Do We Test?
	How Do We Test?
	Unit Tests
	Test-Driven Development (TDD)
	Behavior-Driven Development (BDD)

	PHPUnit
	Directory Structure
	Install PHPUnit
	Install Xdebug
	Configure PHPUnit
	The Whovian Class
	The WhovianTest Test Case
	Run Tests
	Code Coverage

	Continuous Testing with Travis CI
	Setup
	Run

	Further Reading
	What’s Next

	Chapter 11. Profiling
	When to Use a Profiler
	Types of Profilers
	Xdebug
	Configure
	Trigger
	Analyze

	XHProf
	Install
	XHGUI
	Configure
	Trigger

	New Relic Profiler
	Blackfire Profiler
	Further Reading
	What’s Next

	Chapter 12. HHVM and Hack
	HHVM
	PHP at Facebook
	HHVM and Zend Engine Parity
	Is HHVM Right for Me?
	Install
	Configure
	Extensions
	Monitor HHVM with Supervisord
	HHVM, FastCGI, and Nginx

	The Hack Language
	Convert PHP to Hack
	What is a Type?
	Static Typing
	Dynamic Typing
	Hack Goes Both Ways
	Hack Type Checking
	Hack Modes
	Hack Syntax
	Hack Data Structures
	HHVM/Hack vs. PHP

	Further Reading

	Chapter 13. Community
	Local PUG
	Conferences
	Mentoring
	Stay Up-to-Date
	Websites
	Mailing Lists
	Twitter
	Podcasts
	Humor

	Appendix A. Installing PHP
	Linux
	Package Managers
	Ubuntu 14.04 LTS
	CentOS 7

	OS X
	MAMP
	Homebrew

	Build from Source
	Get the Source Code

	Windows
	Binaries
	WAMP
	Zend Server

	Appendix B. Local Development Environments
	VirtualBox
	Vagrant
	Commands
	Boxes
	Initialize
	Provision
	Synced folders
	Get started

	Index
	About the Author

